FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

LONG SAULT LOGISTICS VILLAGE – PHASE A

TOWNSHIP OF SOUTH STORMONT UNITED COUNTIES OF SOUTH STORMONT, DUNDAS AND GLENGARRY

PREPARED FOR:

AVENUE 31 CAPITAL INC.

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

NOVEMBER 2021

CFCA FILE NO. 1909-5629

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number	Date	Comments
Rev.0	November, 2021	Issued for Site Plan Application

TABLE OF CONTENTS

1.0		Introduction	1
2.0		Existing Conditions	2
	2.2	Soils and Groundwater	3
3.0		Water Servicing	4
	3.1 3.2 3.3 3.4	Existing Water Servicing Design Water Demand On-Site Fire Storage Cistern Proposed Water Servicing	4 4 5
4.0		Sanitary Servicing	6
	4.1 4.2	Existing Sanitary Servicing Proposed Sanitary Servicing	6 6
5.0		Drainage Conditions	6
	5.1 5.3 5.4 5.5 5.6	Existing Drainage Features Existing Drainage Areas and Parameters Existing Drainage Modelling and Peak Flows Proposed Drainage Conditions Proposed Drainage Areas and Parameters	6 7 8 8 9
6.0		Stormwater Management	9
	6.1 6.2 6.3 6.3	Stormwater Management Criteria Proposed Conditions - Uncontrolled Peak Flows Stormwater Quantity Control 1 Storm Sewers, Culverts and Culvert Extensions 1 Storage and Conveyance Controls	9 1 1 2
	6.4	Stormwater Quality Control	3
7.0		Site Grading & Road Access 1	4
	7.1 7.2 7.3	Grading Considerations	4 5 5
8.0		Erosion & Sediment Controls During Construction 1	6
9.0		Conclusion and Recommendations1	7

LIST OF TABLES

- Table 1:Estimated Design Water Demand
- Table 2:
 Fire Storage Volume Requirements
- Table 3:
 Phase A Existing Railway Culverts
- Table 4:
 Phase A Existing Conditions Hydrologic Parameters
- Table 5:
 Existing Conditions Peak Flows
- Table 6:
 Phase A Proposed Conditions Hydrologic Parameters
- Table 7:
 Post-Development Uncontrolled Peak Flows
- Table 8:
 Storm Sewer and Culvert Sizing
- Table 9:
 Required Stormwater Storage Volume

LIST OF APPENDICES

- Appendix A: Background Documents & Site Plan
- Appendix B: Water Demand Calculations
- Appendix C: Hydrologic Modelling Parameters
- Appendix D: Visual Otthymo Model Schematics
- Appendix E: Visual Otthymo Output
- Appendix F: Capacity Calculations
- Appendix G: Existing Culvert Capacities Memo

LIST OF DRAWINGS

- ESC-1: Removals, Erosion and Sediment Control Plan
- ESC-2: Removals, Erosion and Sediment Control Plan
- **GRD-1:** Grading Plan for Servicing Works
- **GRD-2:** Grading Plan for Servicing Works
- **GRD-3:** Grading Plan for Servicing Works
- **GRD-4:** Grading Plan for Servicing Works
- **PP-1**: Street 'A' Plan and Profile
- PP-2: Street 'A' Plan and Profile
- PP-3: Street 'B'- Plan and Profile
- PP-4: Watercourse D & Z Plan and Profile
- PP-5: Watercourse E Plan and Profile
- DET-1: Construction Details

LIST OF FIGURES

- Figure 1: Site Location
- Figure 2:Existing Surface Water Features
- Figure 3: Existing Stormwater Drainage Area Plan
- Figure 4: Post-Development Drainage Plan

1.0 Introduction

C.F. Crozier & Associates Inc. (Crozier) was retained by Avenue 31 Capital Inc (Proponent) to prepare a Functional Servicing and Stormwater Management Report in support of a Site Plan Application (SPA) for Phase A of the proposed Long Sault Logistics Village (LSLV) in the Township of South Stormont and the United Counties of South Stormont, Dundas and Glengarry. The location of the Phase A Site is illustrated in Figure 1. Refer to the Phase A, Site Plan prepared by Republic Urbanism, dated November 3, 2021 for additional Site Plan details.

Design items referenced for areas <u>outside of the limits of Phase A</u> are provided for completeness only. A separate Site Plan Application and associated engineering reports will be provided under separate cover for the future development on the subject property for the Long Sault Logistics Village. Phase A of the proposed Long Sault Logistics Village consists of a private railyard, intermodal yards, storage yard, an employee shop, and a shipping/receiving yard. Further details of the development proposal are included in Section 3.0.

This report will demonstrate that the proposed Phase A can be developed in accordance with the Township of South Stormont, Raisin River Conservation Authority and the United Counties of South Stormont, Dundas, and Glengarry (SDG) guidelines from a functional servicing and stormwater management (SWM) perspective. This report is intended to support lifting of the Holding Provision for the site for Phase A only. Additional studies and reports will be completed for future phases to support lifting of the remainder of the Holding Provision.

1.1 Related Studies & Reports

The report has been completed in accordance with the guidelines, standards and policies of the Town and County. The relevant background studies and reports include:

- Design Guidelines for Drinking Water Systems (2008) prepared by Ministry of the Environment (MOE)
- Township of South Stormont Site Plan & Subdivision Design Guidelines (June 2015).
- Ministry of Environment Stormwater Management Planning and Design Manual (March 2003).
- MTO Drainage Management Manual Part 4 (1997).
- 348 Moulinette & 5250 Avonmore Rd Headwater Drainage Feature Assessment prepared by Bowfin Environmental Consulting (November 2020).
- 348 Moulinette & 5250 Avonmore Rd Existing Conditions prepared by Bowfin Environmental Consulting (November 2020).
- Low Impact Development Stormwater Management Planning and Design Guide prepared by the Toronto River Conservation Authority & Credit Valley Conservation Authority (CVC) dated 2010.
- City of Ottawa Sewer Design Guidelines (October 2012).

1.2 Proposed Development

Phase A is part of a phased development plan of the Long Sault Logistics Village which is envisioned as a transmodal logistics hub in the Village of Long Sault. According to the Site Plan prepared by Republic Urbanism dated November 3, 2021, the proposed Phase A development encompasses an area of approximately 36 hectares and is located along the southern boundary of the subject property. The proposed development consists of a railyard with spur lines along the existing CNR corridor. The Site Plan is included in Appendix A.

The elements envisioned for this development include:

- Locomotive Shop & Office (9600 sq.ft.)
- 27 parking spaces (at grade)
- Four (4) rail lines a part of the shipping receiving yard
- Nine (9) rail lines as part of the storage yards
- Two (2) rail lines as part of the intermodal yard
- 630 m Avonmore Road Site Access (Street A)
- 300 m Phase A Access Road (Street B)

This report will consider the Phase A development in its entirety (full buildout) to ensure adequate sizing and locations of the required civil engineering services for the ultimate conditions (i.e., stormwater management, water, and sanitary servicing).

The pertinent background information associated with the servicing strategy for Phase A have been reviewed, including:

- Site Plan (November 3, 2021) prepared by Republic Urbanism.
- Phasing Plan for Long Sault Logistics Village (May 2021) prepared by Republic Urbanism.
- Geotechnical Report (WJM Consulting Ltd., March 3, 2021).

2.0 Existing Conditions

The subject property covers an area of approximately 275 ha (680 ac) and is located northwest of Cornwall in the Township of South Stormont, near the Village of Long Sault. The subject property consists of vegetated green space and is bounded by Highway 401 to the north, Moulinette Road (CR 35) to the west, Avonmore Road (CR 15) to the east, and a Canadian National Railway (CNR) corridor to the south. An existing access from Moulinette Road provides entrance to the subject property.

Two overhead electrical transmission lines traverse the eastern portion of the subject property from north to south and one overhead electrical transmission line running east to west bisects the subject property. The trans-northern oil pipeline owned by Canada Energy Regulator crosses the southeast corner of the subject property. Phase A is located along the southern limits of the subject property and consists of vegetated green space. Phase A encompasses an area of approximately 36 ha (88 ac). Based on review of the Phase A Site topography, Phase A generally slopes to the south and towards the surface drainage features. The topography also identifies a knoll with a height of approximately 11 m, located in the southeast portion of Phase A close to the Canadian National Railway (CNR) tracks.

2.1 Surface Water Conditions

The subject property is traversed by multiple drains, natural watercourses and agricultural drains that are tributary to the South Raisin River. The subject property is located within the jurisdiction of the Raisin Region Conservation Authority (RRCA). An Environmental Study for the Existing Conditions and Headwater Drainage Feature Assessment was completed by Bowfin Environmental Consulting in November 2020 to identify the existing natural features and habitat of the watercourses on the subject property. Please refer to these reports for further details on the existing conditions of the surface water features.

There are six culverts (HWY Culverts 1 to 6) along the north property limits that convey drainage from north to south below Highway 401 to the subject property. There are two culverts (Avonmore Culverts 1-2) along the eastern limits of the Subject Property. There is one culvert (Moulinette Outlet 1) along the western property limits that conveys drainage from the subject property and below Moulinette Road.

There are three existing culverts (Railway Outlet 1 to 3) located along the southern property limits which convey drainage from the subject property across the CNR tracks to the south of the property. The existing surface water features and associated culverts are illustrated on Figure 2.

All existing drains and natural watercourses that transect Phase A will be accommodated as part of the proposed development. Further details on the proposed drainage and stormwater management designs for Phase A.

2.2 Soils and Groundwater

A geotechnical investigation was completed by WJM Consulting Ltd in January 2021, which consisted of excavating fifteen (15) test pits across the subject property to a depth of approximately 5m below existing ground. Four (4) of these test pits were competed within Phase A. Test pits located within Phase A are shown on the Site Grading Plans (GRD-1 to GRD-4).

The geotechnical investigation confirmed the presence of topsoil ranging of a thickness of approximately 0.4 m for the test pits located within the extents of Phase A. Predominately, the soil encountered at these test pits consisted of silty sand, some silty clay and glacial till. Silty clay was found near the outlet of the existing watercourses.

Based on the Geotechnical Report (WJM Consulting, March 2021) groundwater infiltration was observed in one of the test pits located within Phase A during the field investigation. Groundwater infiltration was encountered generally within the sand and silty sand deposits at depths around 3.0m below existing grade.

Based on MTO Design Chart 1.08, hydrologic soil type within the boundary for Phase A was found to be mostly group B with some group D soils and some minor areas with unknown classification. For areas where hydrologic soil group was unknown, an average of the surrounding soils was assumed to calculate the CN as discussed in Section 6.0.

3.0 Water Servicing

The following sections outline the existing and proposed water servicing for Phase A.

3.1 Existing Water Servicing

The subject property is located in a rural area and municipal watermain infrastructure is not located nearby. Currently, the Township does not have plans to provide municipal water servicing in this area.

3.2 Design Water Demand

The preliminary water demand was estimated for the proposed shop building within Phase A. A population density of 8 employees/8 hr. shift was used as per the teleconference with the Rail Consultant on September 22, 2021. Average daily demands of 35 m³/ha/day for industrial uses were used based on Section 3 of the Design Guidelines for Drinking Water Systems (Ministry of Environment, Conservation and Parks, 2008). The maximum day factor and peak hour factor are based on Table 3-1 of Systems (Ministry of Environment, Conservation and Parks, 2008).

Table 1 summarizes the anticipated water demand and Appendix B contains the detailed water demand calculations.

Average Day Demand	Maximum Day Demand	Peak Hour Demand
(L/s)	(L/s)	(L/s)
0.03	0.10	0.14

Table 1: Estimated Design Water Demand

As presented in Table 1, the preliminary water demand for the proposed shop is approximately 0.03 L/s in average daily demand, 0.10 L/s in maximum daily demand and approximately 0.14 L/s in peak daily demand.

A future office expansion area is shown on the Site Plan received on September 14, 2021. The population and ground floor area of the office expansion is currently unknown. As such, the future office expansion has not been included in the water demand calculations summarized in Table 1. A separate application will be required for future office expansion.

3.3 On-Site Fire Storage Cistern

Preliminary calculations were completed to estimate the required fire storage volume for the proposed shop building, as there is no municipal water supply for firefighting purposes. The fire storage volume was calculated using the Ontario Fire Marshalls Fire Protection Water Supply Guideline (1999), as is required in Part 3 of the Ontario Building Code.

The fire storage volume for the shop building was calculated using the dimensions and location of fire separations of the proposed and existing buildings. Based on correspondence with the Rail Consultant dated October 19, 2021, the shop building has a classification a Group F Division 3 occupancy for a medium hazard industrial building. Correspondence with the rail consultant is included in Appendix B. Table 2 below summarizes the fire storage volumes calculated for the largest existing and proposed buildings.

Method	Total Area ¹ (m²)	Height (m)	Volume (m³)	K ²	Sside ³	Required Fire Storage Volume, Q (L)
(Part 3 of the OBC)	861	4.0	3,444	31	1	106,764

Table 2: Fire Storage Volume Requirements

Notes:

1. The ground floor area of the proposed shop building was estimated based on the Site Plan.

2. K values for the existing buildings are based off assumed construction materials. K values for proposed buildings are based off information provided by the Rail Consultant.

3. S_{side} values determined from distance to other structures using Figure 1 in Section 6.3 of the Ontario Fire Marshalls Guidelines.

4. The height of the shop building has been assumed to be 4.0 m. This is to be confirmed by the Architect at the detailed design stage.

3.4 Proposed Water Servicing

As seen in Table 2, a storage volume of 106,764 L is the required minimum fire storage volume, and it must be supplied at a rate of 45 L/s for 0.5 hours. Refer to Appendix B for preliminary fire storage volume calculations. A 114,000 L precast concrete tank equipped with a dry hydrant is proposed. The Architect and Mechanical engineer will confirm the fire requirements at the detailed design stage.

It is recommended that Phase A be serviced by a new drilled private water supply well. The well should be constructed by a licensed well contractor in accordance with O.Reg. 903 and located a minimum distance of 15 m from any source of pollution and at least 15 m from any of the sewage system components listed in Tables 8.2.1.6A and 8.2.1.6.B of the Ontario Building Code (2012).

The proposed water supply well will need to be tested to determine if it can meet the anticipated water demand for Phase A. If the proposed well cannot meet the anticipated water demand, then a domestic drinking water cistern will be required to provide sufficient water during peak times. The sizing and design of the water cistern, if required, will be completed at the detailed design stage. A preliminary location of the proposed well is shown on the Grading Plan for Servicing Works (Drawing GRD-3). The location and depth of the domestic supply well should be recommended by the Hydrogeologist during the detailed design stage.

A fire protection cistern is proposed to provide the fire protection volume calculated for the property. A dry hydrant will be located on the fire route of the building to provide coverage for the proposed shop building. The fire protection cistern and the dry hydrant are located north of the proposed shop building. The Grading Plan for Servicing Works (DWG GR-3) illustrates conceptual fire storage tank and dry hydrant to provide firefighting flows for the shop building. The specifications for the tank and dry hydrant system shall be confirmed by the mechanical engineer with the Township fire department.

Based on discussions with the Proponent, there may be future opportunities to connect the shop building and future office expansion to municipal water services as the remainder of the subject property is developed as part of the Long Sault Logistics Village. This water servicing option may be explored as part of future development applications.

4.0 Sanitary Servicing

The following sections outline the existing and proposed sanitary servicing for Phase A.

4.1 Existing Sanitary Servicing

The subject property is located in a rural area and municipally owned sanitary infrastructure is not located near Phase A. Currently, the Township does not have plans to provide municipal sanitary servicing in this area.

4.2 Proposed Sanitary Servicing

Municipal sanitary services are not available at Phase A. Therefore, the shop building will be serviced with a privately owned onsite sewage system with subsurface disposal. Sizing of the on-site sewage system and detailed design will be completed by Others and will be submitted under separate cover. The proposed onsite sewage system must be sized and sited in accordance with Part 8 of the Ontario Building Code and should have sufficient capacity to accommodate the proposed population density of 8 employees/8 hr. shift as calculated in accordance with Table 8.2.1.3B of the OBC.

A preliminary location of the proposed area for the onsite sewage system is shown on the Grading for Servicing Works (Drawing GRD-3).

Based on discussions with the Proponent, there may be future opportunities to connect the shop building and future office expansion to municipal sanitary services as the remainder of the subject property is developed as part of the Long Sault Logistics Village. This sanitary servicing option may be explored as part of future development applications.

5.0 Drainage Conditions

The following sections outline the existing drainage conditions for Phase A.

5.1 Existing Drainage Features

The subject property contains several headwater drainage features and watercourses that convey drainage. Phase A is located at the southern property limits and is transected by several watercourses.

Light Detection and Ranging (LiDAR) was used to create a topographic surface for the subject property to identify the onsite drainage flow routes and pre-development drainage conditions of Phase A, Elevations of culverts, headwalls, and railway structures were then surveyed by Annis, O'Sullivan, Vollebekk Ltd (June 2021) and imported into the relevant plans.

Review of this information indicated that the general drainage of the site is consistent with the drainage features delineated by Bowfin Environmental (November 2020). Four existing watercourses flow south across Phase A before discharging to three culverts located along the CNR. The watercourses and railway culverts were given arbitrary names for ease of reference. Existing surface water features and railway structures are shown in Figure 2.

Table 3 provides a summary of the existing hydraulic structures at the railway crossing.

Culvert	Invert Elevations (masl)		Material	Shape	Length	Diameter	Upstream
Name	Inlet	Outlet			(m)	(m)	watercourses
Railway Outlet #1	74.71	74.7	Corrugated Steel	Circular	26	2.15	F E
Railway Outlet #2	74.21	72.98	Corrugated Steel	Circular	39	0.90	D
Railway Outlet #3	69.24	69.2	Corrugated Steel	Horizontal Ellipse	39	2 X 3	Z

Table 3: Phase A Existing Railway Culverts

It was noted during field inspection that Railway Outlet #2 has a significant drop between the inlet and outlet, potentially due to settlement or failure. This culvert is under review by CNR to determine the appropriate course of action.

5.2 CNR Culvert Capacities

A detailed hydrologic and hydraulic analysis was completed for the three existing CNR Culverts outlined in Table 3 which serve as outlets for Phase A. It was determined each culvert has capacity for the existing 100-year flow. Therefore, other than the structural condition of Outlet #2, which is being reviewed by CNR, no upsizing of the culverts is necessary. A technical memo confirming the capacities of the existing culverts is found in Appendix G.

Each of the culverts will be extended to accommodate drainage through the proposed rail yard, but the extensions will have similar characteristics to the existing culvert (shape, material, and slope, where feasible). It is noted that length, slope, and orientation of the extensions was taken into consideration to minimize the potential impact on fish habitat.

5.3 Existing Drainage Areas and Parameters

Land use within the subject property was mapped using a combination of aerial imagery and wetlands data mapped by Bowfin Environmental. Land use types included cultivated, lawn, roads, wetlands, and woods. Phase A consists mostly of wooded area, followed by wetlands, and a small section of lawn (grass). The land use areas, combined with the soils data described in Section 2.2, were used to determine the curve number (CN) for each drainage area. CN values were selected from Design Chart 1.09 of the MTO Drainage Management Manual (1995-1997) based on existing conditions. For drainage areas containing multiple land use and soil types, an area-weighted calculation was used. Figure 3 shows the existing conditions drainage area plan and corresponding CN value for each area.

Depression storage, or initial abstraction, is usually calculated based on land use. However, the Township of South Stormont Site Plan and Subdivision Guidelines (June 2015) provides depression storage values based only on pervious or impervious area. The depression storage is 1.57 mm for impervious areas and 4.67 mm for pervious areas.

Based on Table 4 of the Township's guidelines, a runoff coefficient (RC) of 0.25 was selected for undeveloped areas. Time to peak was then calculated using the Airport method based on RC values less than 0.4 and drainage areas less than 1 km².

Table 4 provides a summary of the hydrologic parameters used to model the pre-development drainage areas. Figure 3 describes the catchment areas modelled, and their respective outlets.

Table 4. Thase A Existing Contailors Hydrologic Farameters					
Catchment ID	Drainage Area (ha)	Curve Number	Initial Abstraction (mm)	Time to Peak (hours)	
102A	2.25	53	4.67	0.77	
105A	4.53	60	4.67	0.57	
106A	4.21	60	4.67	0.48	
107A	3.94	60	4.67	0.42	
108A	2.69	61	4.67	0.37	
109A	3.10	55	4.67	0.57	
110A	2.19	60	4.67	0.45	

Detailed calculations for all parameters are found in Appendix C.

Table 4: Phase A Existing Conditions Hydrologic Parameters

5.4 Existing Drainage Modelling and Peak Flows

Visual OTTHYMO Version 6.1 (VO6) hydrologic modelling software was used to generate runoff flows from the existing catchments. The 12-hour AES storm was used to model the existing conditions flow rates for each of the drainage areas and outlet, per Township guidelines.

Table 5 provides existing conditions peak flows for the 5-year and 100-year storm events. A schematic of the existing conditions hydrologic model is shown in Appendix D.

Catchment ID	5-Year Peak Flow (m³/s)	100-Year Peak Flow (m³/s)			
102A	0.01	0.04			
105A	0.03	0.10			
106A	0.04	0.11			
107A	0.03	0.09			
108A	0.02	0.06			
109A	0.02	0.06			
110A	0.02	0.05			

Table 5: Existing Conditions Peak Flows

5.5 Proposed Drainage Conditions

As noted in Section 3, the proposed development of Phase A consists of one storage shop/office building, 27 parking spaces, 15 rail lines, Intermodal Yard, Storage Yard, Shipping/Receiving Yard, and two access roads (Street A and Street B). Phase A covers an area of approximately 36 ha of largely hard surfaces. The change in land use is expected to result in increased runoff rates and volumes. This section will outline the measures proposed to alleviate the changes in the runoff conditions and meet the identified design criteria.

5.5.1 Channel Realignments

Watercourses D and E will be realigned to allow for a more efficient development layout.

Watercourse D, at the east edge of Phase A, will be realigned and run parallel to Street B and then directed to a storm sewer that will extend to the southern limit of Phase A (Railway Culvert #2). Watercourse E will also be realigned to accommodate future development phases. Preliminary alignments were completed using detailed topographic mapping and sized to convey the 100-year peak flows for the respective tributaries.

While only a portion of the watercourse realignments fall within the limits of Phase A, the full extents of the proposed alignments were submitted as part of an application to the Department of Fisheries and Oceans (DFO) Canada by Bowfin Environmental and are currently under review. The DFO application is included in Appendix A.

5.6 Proposed Drainage Areas and Parameters

Post-development drainage areas were delineated to reflect the proposed grading plan, watercourse realignments, and conveyance channels. Post-development drainage areas are shown in Figure 4.

Parameters were calculated based on the same methods described in Section 5.3, with the addition of total impervious (TIMP) and directly connected impervious (XIMP) values.

Table 6 provides a summary of the hydrologic parameters used to model the post-development drainage areas. Detailed calculations for all parameters are shown in Appendix C and a schematic of the future conditions hydrologic model is shown in Appendix D.

Catchment ID	Drainage Area (ha)	Curve Number	Initial Abstraction (mm)	Total Imperviousness	Directly Connected Imperviousness
102F	2.15	95	1.57	75%	75%
105F	5.37	91	1.57	77%	77%
107F_1	4.21	91	1.57	75%	75%
107F_2	1.72	95	1.57	89%	89%
108F	1.57	84	1.57	52%	52%
108F_EX1	1.18	60	1.57	NA	NA
108F_EX2	0.43	62	1.57	NA	NA
109F	2.71	97	1.57	75%	75%
110F	2.65	97	1.57	75%	75%

Table 6: Phase A Proposed Conditions Hydrologic Parameters

Notes: 1. Gravel areas were assumed to be 75 % impervious.

2. Enhanced grass swales and watercourses were considered pervious while all other proposed land use was considered 100 % impervious.

3. For impervious areas, Township guidelines specify a depression storage of 1.57 mm.

6.0 Stormwater Management

6.1 Stormwater Management Criteria

The references used to guide the stormwater management of Phase A are found in Section 1.1 of this report. The stormwater management criteria relevant to the development of Phase A were implemented into the hydrologic model and the design of the proposed stormwater management infrastructure.

Stormwater management criteria have been divided into hydrologic modelling, stormwater quantity, and stormwater quality requirements.

Hydrologic Modelling

- Soil Conservations Service (SCS) Curve Number (CN) method shall be used during modelling to accurately represent the land use, soil, and antecedent moisture conditions present within the development area.
- Depression storage, or initial abstraction, values shall be 1.57 mm for impervious areas and 4.67 mm for pervious areas as per Township of South Stormont Site Plan & Subdivision Design Guidelines.
- For developments larger than 15 hectares and/or drainage systems that are more complex, a computer model shall be created using approved software. Visual Otthymo Version 6.1 (VO6) modelling software was used for hydrologic modelling.
- The AES 30 % Southern Ontario 12-hour storm distribution shall be used in sizing stormwater storage facilities as per Township of South Stormont Site Plan & Subdivision Design Guidelines (2015)
- Culvert sizing calculations shall be based on expected tailwater elevation resulting from existing downstream conditions. Design software may be used in performing calculations. CulvertMaster hydraulic modelling software was used for culvert sizing.

Stormwater Quantity

- Post-development peak runoff must not exceed the corresponding pre-development peak runoff with storm events with return periods of 5 and 100 years. Allowable peak flows are to be calculated from the pre-development condition.
- Storage of stormwater will be required to achieve the pre-development condition.
- The minor system is to be sized to accommodate the 5-year design storm event.
- The major system shall have the capacity to accommodate the 100-year design storm while maintaining 0.3 m freeboard between the 100-year elevation and finished grade at buildings.
- Capacity of the major storm system shall be evaluated using Manning's formula. Roughness coefficient values shall be 0.013 for concrete and 0.024 for corrugated steel pipes.
- Swales will be required along the perimeter of the development to ensure positive drainage of the development.

Stormwater Quality

- A minimum of 70 % total suspended solids (TSS) removal is required for new developments. To be conservative, the analysis assumed a target of 80 % TSS removal.
- The minimum longitudinal swale slope of swales shall be 0.5 %.
- Enhanced swales to have side slopes of 3:1 or less.
- Enhanced swales maximum velocity of 0.5 m/s for the 4-hour 25 mm Chicago storm event.

6.2 Proposed Conditions - Uncontrolled Peak Flows

The introduction of hard surfaces associated with development reduces hydraulic roughness and infiltration capabilities, resulting in increased stormwater runoff potential. A summary of the uncontrolled post-development peak flows for Phase A, estimated by hydrologic modelling, are presented in Table 7. Catchment areas are described in Figure 4.

Catchment ID	5-Year Peak Flow (m³/s)	100-Year Peak Flow (m³/s)
102F	0.071	0.136
105F	0.174	0.333
107F_1	0.133	0.252
107F_2	0.064	0.118
108F	0.040	0.083
108F_EX1	0.010	0.028
108F_EX2	0.004	0.010
109F	0.102	0.188
110F	0.089	0.169

Table 7: Post-Development Uncontrolled Peak Flows

6.3 Stormwater Quantity Control

Hydrologic modeling was prepared for both pre-development and post-development site conditions. The 12-Hour AES rainfall distribution was applied to the hydrologic model and peak flow rates were compared under both scenarios. These hydrologic models were used to estimate the stormwater controls to reduce post-development peak flows to pre-development peak flows.

The modelling results were also used for sizing conveyance channels and culverts, as described in the following section.

6.3.1 <u>Storm Sewers, Culverts and Culvert Extensions</u>

According to Township standards, cross-culverts shall be a minimum of 600 mm in diameter and driveway/access culverts shall be a minimum of 400 mm in diameter. No storm sewer shall be less than 200 mm in diameter.

Each of the CNR culverts will need to be extended to accommodate the future tracks. Since there is not sufficient space between each of the tracks to allow for an open channel, the culvert extensions will consist of a solid pipe for approximately 100 m. This length has been minimized as a consideration for fish passage, but it is recognized that this is still a long enclosure.

Additional stormwater inlets may be required along the length of the culvert extensions through the detailed design phase to allow for runoff between the tracks.

All culverts and storm sewers within Phase A were sized to convey 100 Year flows due to a lack of an overland flow route. The cross-culvert (at Street B) and associated storm sewers were sized as per the MOE Design Guidelines for Sewage Works (March 2019) to accommodate the design peak flow while achieving a flow velocity of 0.6 m/s to 3.0 m/s. Culvert capacities and maximum velocity values were determined using CulvertMaster design software. CulvertMaster results are shown in Appendix F.

A schematic of the combined hydrologic model for Phase A, the subject property, and external drainage areas is provided in Appendix D.

Table 8: Storm Sewer and Culvert Sizing						
ID	Drainage Area (ha)	Peak Flow (m³/s)	Material	Diameter (mm)	Maximum Velocity (m/s)	Capacity (m³/s)
Railway Outlet#1 Extension	322.94	5.26	CSP	2,100	2.89	6.50
Railway Outlet #2 Extension	80.30	0.99	Concrete	1,050	2.24	1.30
Railway Outlet #3	228.49	3.11	CSP	2,000 X 3,000	0.96	11.36
Proposed Cross-Culvert at Street B	0.74	0.05	CSP	600	1.49	0.27

A summary of the relevant culvert capacities is provided in Table 8.

6.3.2 Storage and Conveyance Controls

There are 6 areas within Phase A that will provide flood storage. These areas, referred to as Flood Storage Areas 1 through 6 on Figure 4, are trapezoidal channels with earth berm-type control structures at the outlets.

Each control structure will be fitted with the appropriately sized orifice(s) to ensure that the 5-and 100-year storm events are controlled to their respective predevelopment rate. The flood storage areas are meant to be low maintenance facilities, allowing vegetation to grow naturally.

Table 9 summarizes the approximate storage volume required at each location.

Storage ID	Approximate Flood Storage Required (m ³)				
Stormwater Storage Area 1	1,600				
Stormwater Storage Area 2	3,750				
Stormwater Storage Area 3	2,550				
Stormwater Storage Area 4	1,100				
Stormwater Storage Area 5	1,900				
Stormwater Storage Area 6	1,800				

Table 9. Required Stormwater Storage Volume

These storage areas facilities will provide the required storage volumes to control the post-development peak flows to pre-development peak flows. They will also serve as quality control measures, as outlined in Section 7.4.

6.4 Stormwater Quality Control

As stated in Section 6.1, the Township requires a minimum of 70% of Total Suspended Solids (TSS) removal for new developments as per the Site Plan & Subdivision Guidelines (Township of South Stormont, June 2015).

To meet the MECP's water quality requirements (per MOE 2003 Stormwater Management and Planning Manual), it will be necessary to implement Best Management Practices (BMP's) to control the quality of on-site stormwater. Due to the flat nature of Phase A, water quality control will be achieved through extensive use of enhanced grassed swales. Stormwater flowing from the proposed development will be treated through contact with vegetation and retention in the enhanced grassed swale. Retention time can be increased with the use of check dams, if necessary.

Clean runoff will be separated from stormwater to the extent possible. Options for infiltration of clean runoff will be considered at the detailed design stage but high groundwater is expected to be an issue in Phase A.

As discussed in Section 5.5, a trapezoidal ditch is proposed along the northern limits of Phase A to capture and convey flows from the Intermodal Yard, and direct treated flows towards the realigned watercourses. This ditch will incorporate an enhanced grassed swale over its entire length of approximately 1,200 m. Enhanced grassed swales are the preferred means of stormwater treatment for this site due to the linear nature of the development, and the relatively low maintenance requirements. The following design parameters were used to enhance the pollutant removal rate for the grass swale:

- Longitudinal slope of less than 0.5%
- Side slopes of 3:1 or less
- Maximum velocity of 0.5 m/s for the 4-hr, 25 mm Chicago storm event.

The proposed ditches and swales have been designed in accordance with the LID SWMPD Guide (CVC & TRCA, 2010).

East-West Trapezoidal Ditch

The proposed grassed flat-bottomed, trapezoidal ditch is designed for stormwater conveyance and to provide pre-treatment for stormwater runoff to achieve the water quality control requirements of enhanced grassed swales. The east-west ditch is proposed to have the following characteristics.

- Flat-bottom width of 10 m
- Side slopes of 3:1 max
- Maximum depth of 1.5 m (for flood storage)
- Longitudinal slope ranging between 0.1% to 0.3%
- Overall length of approximately 1200 m.

The proposed ditch was modelled in Flowmaster to ensure that the proposed design fulfilled the requirements outlined in the LID Guide. The modelling results indicate that during the 25 mm storm event, flows in the ditch will have a normal depth of approximately 0.02 m and a velocity of 0.08 to 0.11 m/s, which is in conformance with the velocity requirement. As such, the proposed ditch is expected to provide adequate water quality benefits. Detailed Flowmaster calculations and sections that were modelled are included in Appendix F.

North/South Shop Area Swales

The proposed swales along the north and south of the locomotive shop and office are designed for stormwater conveyance and to provide pre-treatment for stormwater runoff. The swale on the north side of the shop will have the following characteristics:

- Side slopes of 3:1 max
- Longitudinal slopes ranging between 1 and 1.2%
- Bottom width of approximately 2 m

The north ditch was modelled in Flowmaster to ensure that the design fulfilled the requirements listed in the LID Guide. The modelling results indicate that during the 25 mm storm event, flows in the ditch will have a maximum depth of less than 0.1m and a velocity of 0.1 to 0.2 m/s. The ditch is in conformance with the velocity requirement for sediment removal. As such, the proposed ditch will provide adequate water quality benefits. Detailed Flowmaster calculations and sections that were modelled are included in Appendix F.

The south swale will be v-shaped but will also have a gentle longitudinal slope to aid in sediment removal, even though it will not receive runoff directly from the driveway.

Based on the information presented above, best efforts have been made to provide an Enhanced Level of Protection in accordance with the MOE SWM Planning and Design Manual (2003) through treatment via contact with vegetation in the enhanced grassed swales.

7.0 Site Grading & Road Access

7.1 Grading Considerations

The grading of Phase A is influenced by the elevation of the new tracks and the receiving watercourses. Railway operations that are expected to take place within Phase A, such as offloading of containers, require flat surfaces so all grading will be at minimum slopes.

Phase A will be graded with consideration of the following:

- Provide safe overland conveyance of flows to appropriate drainage outlets.
- Ensure positive drainage to minimize nuisance flooding.
- Match grades along property limits.
- Balance cut and fill to avoid excessive removal or importation of material.

7.2 Site Grading

The subject property generally slopes from north to south Based on review of the existing topography. Overall, the subject property consists of low rolling hills in the southern half where Phase A is located, while the northern half is relatively flat. The topography also identifies a knoll located in the southeast portion of the subject property close the CNR track. The elevation of the CNR rail track ranges from approximately between 82 m to 73 m from the west end to the east end, respectively.

The proposed grading strategy for Phase A matches the existing elevations along the southern property limits and ties in the proposed rail tracks grading prepared by J.L. Richards (October 7, 2021). The paved and gravel driveway area will possess a longitudinal gradient as an overland flow route to the trapezoidal ditch along the northern limits of Phase A. the proposed internal driveway slopes range between 0.2% to 1.4%. This approach allows for the relatively flat grades to comply with the stormwater management strategy and to provide access for heavy loaded vehicles. The Grading Plans for Servicing Works (Drawings GRD-1 to GRD-4) illustrate the proposed grading for the driveway.

The proposed shop and parking area have been proposed near the existing knoll and the depression of the existing drains in the southeastern area of the subject property. Typical sloping (maximum 3:1 side slopes) is proposed to accommodate the difference in proposed and existing elevations in the area (maximum 6m differential). A relatively flat gravel access road is provided to the shop area. The access road to the shop building and parking areas is complete with swales to the north and south. The proposed grading strategy for the shop area involves matching to existing grades north of the shop area, and to the southern property limits via maximum 3:1 landscaped side slopes. The Grading Plan for Servicing Works (Drawing GR-4) illustrates the proposed grading for the proposed shop area.

7.3 Site Access & Road Design

As illustrated on the Site Plan prepared by Republic Urbanism (November 3, 2021), primary access to the proposed development will be provided by Street A via Avonmore Road. It is our understanding that Street A will be privately owned in the interim condition as it provides access to Phase A only. Street A will ultimately connect to Moulinette Road and will be assumed by the Township under full build out conditions. The ultimate build out design of Street A will be completed as part of the detailed design of future phases and will be in accordance with the Site Plan & Subdivision Design Guidelines (2012).

Street B will provide a private access from Street B to the Phase A railyard and shop area. Where an internal gravel driveway is proposed to the shop building and parking lot located in the eastern portion of Phase A. The proposed Street A road is designed as a relatively flat road with slopes ranging between 0.5% to 1.6% to the intersection with Street B in the interim condition. Street B is proposed to slope at approximately 0.6% to 1.2% to the railyard area. The proposed street accesses have been graded with respect to the proposed railyard grading.

Both Street A and Street B will be complete with roadside ditches to capture and convey road drainage. The proposed accesses have been graded such that stormwater runoff from the driveways will be self-contained and existing road elevations will be matched. The grading of the proposed Phase A accesses is shown on the Grading Plan (Drawing C104A-104B).

The Phase A access design and locations will be confirmed by the Traffic Impact Study, and will be subject to Township, and County approval. Crozier has completed a Traffic Impact Study (TIS) to support the proposed development and is provided under a separate cover.

Please refer to the Geotechnical Report (WJM Consulting, March 2021) for further details regarding the recommended road and pavement design.

8.0 Erosion & Sediment Controls During Construction

Erosion and sediment controls will be installed prior to the beginning of any construction activities. They will be maintained until the Site is stabilized or as directed by the Site Engineer and/or Township of South Stormont. The Removals, Erosion & Sediment Control Plan (DWG ESC-1 & ESC-2) identifies the location of the recommended control features. Controls will be inspected after each significant rainfall event and maintained in proper working condition. It is noted that the ESC Plans are not a final document and may be revised at any time to suit site conditions.

Any of the following erosion and sediment controls and measures may be provided during construction of the proposed development:

- Silt Fencing: light duty silt fencing will be installed along the perimeter of the site to delineate the work area and to intercept sheet flow. HD silt fence will be used adjacent to any watercourses. Additional silt fence may be added based on field decisions by the Site Engineer and Proponent, prior to, during and following construction.
- **Rock Mud Mat:** A rock mud mat will be installed at the entrance of the construction zone to prevent mud tracking from the site onto the surrounding lands and perimeter roadway network. All construction traffic will be restricted to this access only.
- Interceptor Swales: Drainage will be conveyed by a series of interceptor ditches and swales. The drainage swales will be strategically placed onsite to direct runoff to the erosion and sediment controls. These swales will include flow check dams and rip-rap as required.
- Flow Check Dams: Temporary straw bale and rock check dams will be utilized on-site to prevent any silt migration off site during and after construction activities. These dams will promote settling of suspended solids and will reduce flow velocities. Sediment accumulation will be monitored and removed as necessary. The temporary check dams will be constructed in accordance with Ontario Provincial Standards (OPSD 219.180, 219.210 & 219.211). The need for additional flow check dams will be based on the field condition at the discretion of the Engineer and Developer and implemented as necessary.
- **Dust Suppression:** During earthwork activities, the Contractor will be responsible for ensuring dust suppression is maintained via water or calcium chloride, or other methods approved by the Engineer.
- **Excavated Sediment Trap:** Excavated sediment trap(s) or basins may be required to remove sediment from runoff before the runoff discharges to receiving conveyance routes.
- **Erosion Prevention:** During earthwork activities the General Contractor will ensure that the prevention of erosion of exposed soils. Possible measures include the use of straw mulch, erosion control blankets, or terraseeding.
- **Topsoil Stockpiles**: It will be necessary to strip topsoil prior to earth moving. Temporary topsoil stockpiles will be located a minimum of 30 m from the watercourse with appropriate silt fence protection.

9.0 Conclusion and Recommendations

This report was prepared to support the lifting of the Holding Zone and Site Plan Application for Phase A of the Long Sault Logistics Village development in the Township of South Stormont. The proposed development can be serviced for water, sanitary and stormwater in accordance with the Township of South Stormont, and Raisin River Conservation Authority requirements and standards. Our conclusions and recommendations include:

- 1. The proposed Phase A railyard development comprises of approximately 36 ha, including a proposed shop, internal driveway, intermodal yard, storage yard, shipping/receiving yard, and associated parking.
- 2. Two watercourses which transect Phase A will be realigned to provide a more efficient development concept. These watercourses are the subject of a report entitled 'Headwater Drainage Feature Assessment' (Bowfin, 2020) which indicates that form and function of the watercourses can be preserved through the realignments. An application for the realignments has been submitted to the Department of Fisheries and Oceans (DFO) for consideration.
- 3. Access to the Site will be provided by an entrance road from Avonmore Road (Street A) and through a private access road (Street B).
- 4. The domestic water servicing for the proposed development will be provided by a private well. A preliminary location for the proposed well has been provided.
- 5. Fire protection for the shop building will be provided by a cistern and a dry hydrant. A preliminary location for the proposed cistern and dry hydrant has been provided.
- 6. Sanitary servicing for the proposed development will be provided by a privately owned onsite sewage system, designed by others in accordance with the Ontario Building Code. A preliminary footprint for the proposed sewage system has been provided.
- 7. The proposed stormwater management strategy for Phase A includes the use of multiple enhanced grassed swales to address water quality requirements and over-sized trapezoidal channels for flood storage. It is noted that naturally flat topography lends itself well to the use of enhanced swales which require gentle longitudinal slopes. Infiltration BMP's may be considered at the detailed design stage, but high groundwater is expected to be an issue.
- 8. The grading of Phase A is governed by the overall drainage system for the proposed development and proposed sanitary forcemain extension. Grades are matched along the eastern, western, and southern property limits and along the northern development limits.

This report has been prepared in support of a Site Plan Application for development of Phase A of the Long Sault Logistics Village. It is our opinion that Phase A can be developed using conventional civil design practices and stormwater management techniques without any adverse impact to the downstream environment. We truly hope that the Township will reach the same conclusion.

Respectfully submitted,

C.F. CROZIER & ASSOCIATES INC.

B. Ulace.

Brendan Walton, P.Eng. Project Manager

SA:JW/cj

C.F. CROZIER & ASSOCIATES INC.

Tony Elias, P.Eng. Senior Project Manager

I:\1900\1909 - Avenue 31\5629_Long Sault Bus Pk\Reports\2021.11.15_(1909-5629)_FSSWMR.docx

APPENDIX A

Background Documents & Site Plan

A1 – Culvert Survey (Annis, O'Sullivan, Vollebekk Ltd) A2 – DFO Permit Submitted Application (Bowfin Environmental, August 2021) A3 – Relevant Geotechnical Report Excerpts A4 – Site Plan (Republic Urbanism, November 3, 2021)

SKETCH TO ILLUSTRATE CULVERT LOCATIONS ALONG HIGHWAY 401 BETWEEN MOULINETTE ROAD AND AVONMORE ROAD

LONG SAULT, ONTARIO

Surveyed by Annis, O'Sullivan, Vollebekk Ltd.

Notes & Legend

SP	Denotes	Corrugated Steel Pipe
PP	н	Corrugated Plastic Pipe
ð	н	Diameter
/P	н	Top of Pipe

Elevations are geodetic and are referred to the CGVD28 geodetic datum.

BOUNDARY INFORMATION COMPILED FROM PLANS

ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 14 Concourse Gate, Suite 500 Nepean, Ont. K2E 7S6 Phone: (613) 727-0850 / Fax: (613) 727-1079 Email: Nepean@aovltd.com Land Surveyors Job No. 20524-20 Av31 Capital PtLts 31-38 C5 C0 Ski

Canada

Request for Review

Please note that Guidance on Submitting a Request for Review is available at the end of this form. This guidance explains the requirements for a Request for Review by DFO under the fish and fish habitat protection provisions of the *Fisheries Act*. All information requested must be provided. If you attach documents to your application with additional information, you must still provide appropriate summaries in the spaces provided on the application document or your application will be considered incomplete.

A) Contact information

Name of Business/Company:	Select additional contact:			
Avenue 31 Capital Inc.				
Name of Proponent:				
Jennifer Murray	Bowfin Environmental Consulting Inc.			
Mailing address:	Mailing address:			
801-250 City Centre Avenue	168 Montreal Road			
City/Town:	City/Town:			
Ottawa	Cornwall			
Province/Territory:	Province/Territory:			
Ontario	Ontario			
Postal Code:	Postal Code:			
K1R 6K7	К6Н 1В3			
Tel. No. :	Tel. No. :			
613-799-2422	613.935.6139			
Fax No.:	Fax No.:			
Email:	Email:			
jmurray@ave31.com	m.lavictoire@bowfinenvironmental.ca			
Is the Proponent the main/primary contact? O Yes No If no, please enter information for the primary contact or any add	ditional contact.			

Michelle Lavictoire with Bowfin Enviornmental Consulting (see contact information above)

B) Description of Project

Canada

If your project has a title, please provide it.

380 Moulinette and 5400 Avonmore Road

 (\bullet) No Is the project in response to an emergency circumstance*? O Yes

Does your project involve work in water? \odot Yes No

If yes, is the work below the High Water Mark*? • Yes Ο No

What are you planning to do? Briefly describe all project components you are proposing in or near water.

The purpose of this RfR is to introduce this major infrastructure project and to obtain advice from DFO on some of the key elements that will affect the concept plan. At this time, information for the Phase A is available (though some footprints are pending).

General Concepts for Site:

• The watershed boundaries will be respected. No change to the amount of water flowing to the Lake St. Lawrence (Unnamed Tributary to Hoople) or to the Raisin River Watershed (all other channels on site).

The water originating from the MTO culverts on Highway 401 needs to be accommodated.

There will be no change in the amount of flow reaching each of the culverts under the railroad. This will ensure that the fish habitat downstream of the railroad is not impacted.

Since there was no defined channel on Site for the Unnamed Drain 2, one option being considered is urbanizing this area and piping the flow to the railroad culvert.

It is anticipated that the three Agricultural Drains will be removed but their contributing flow will continue to reach Unnamed Drain 3 (future submission).

Current submission:

1. The lower portions of the South Raisin (Watercourse F on the accompanying drawing) and of the Unnamed Tributary 1 (Watercourse E on the accompanying drawing) will be realigned into a single combined new channel. In the future, the upstream portion of these channels may also be realigned (Table 6).

2. Four culverts will be installed on this new combined channel (Table 7) (locations shown on accompanying drawing).

Please see details in Table 8 of accompanying technical report.

How are you planning to do it? Briefly describe the construction materials, methods and equipment that you plan to use.

Details are to be determined. Anticipated that the new culverts and new channel alignments for Phase A would be built first, followed by fish out of existing channels and then the commissioning of new channels and decommissioning of existing channels.

Include a site plan (figure/drawing) showing all project components in and near water.

O No Are details attached? • Yes

Identify which work categories apply to your project.

Aquaculture Operations	Log Handling / Dumps
Aquatic Vegetation Removal	Log Removal
Beaches	Moorings
Berms	Open Water Disposal
Blasting / Explosives	Piers

4

Boat Houses	Riparian Vegetation Removal			
Boat Launches / Ramps	Seismic Work			
Breakwaters	Shoreline Protection			
Bridges	Stormwater Management Facilities			
Cable Crossings	Surface Water Taking			
Causeways	Tailings Impoundment Areas			
Culverts	Temporary Structures			
Dams				
Dewatering / Pumping	Water Control Structures			
Docks	Water Intakes / Fish Screens			
Dredging / Excavation	U Water Outfalls			
Dykes	✓ Watercourse Realignment			
Fishways / Ladders				
Flow Modification (hydro)	□ Wharves			
Groundwater Extraction				
Groynes				
Habitat Restoration	Other Please Specify			
Ice Bridges				
Was your project submitted for review to another federal or provincial de	epartment or agency?			
If yes, indicate to whom and associated file number(s).				
Raisin Region Conservation Authority				
C) Location of the Project				
Coordinates of the proposed project Latitude 45.047199	N Longitude 74.885575			
OR UTM zone 18T	509011 Easting			
	4988200 Northing			
Include a map clearly indicating the location of the project as well as sur	rounding features.			
Name of Nearest Community (City, Town, Village):				
L				

South Stormont

Lake St. Lawrence and Raisin River

Municipality, District, Township, County, Province:

Name of watershed (if applicable):

Name of watercourse(s) or waterbody(ies) near the proposed project: South Raisin River and unnamed drains

Provide detailed directions to access the project site:

From Highway 401 turn south onto Moulinette Road. Access to site is on east side of Moulinette Road

D) Description of the Aquatic Environment

Identify the predominant type of aquatic habitat where the project will take place.

- OEstuary (Estuarine)
- OLake (Lacustrine)
- On the bank/shore at the interface between land and water (Riparian)
- River or stream (Riverine)

Canada

- OSalt water (Marine)
- OWetlands (Palustrine)

Provide a detailed description of biological and physical characteristics of the proposed project site. This description should include information on aquatic species at risk* (), their residence* and critical habitat* if found in the area. An overview of the distribution of aquatic species at risk and the presence of their critical habitat within Canadian waters can be found here

IPLEASE REFER TO ACCOMPANYING REPORT FOR DETAILS AND PHOTOGRAPHS.

3.2 Background Review

The site includes two watersheds: Lake St. Lawrence of the St. Lawrence River (upstream of Moses-Saunders Dam in Cornwall) and Raisin River watershed (which flows into the Lake Francis reach of the St. Lawrence River, downstream of the Moses-Saunders Dam. This river outlets far downstream, roughly 32 km from the site, as the crow flies).

As mentioned in the introduction, while there were eight candidate features, only seven were present on site. The Unnamed Drain 2 had no defined channel on-site. All other seven features were headwaters. There was no nearby information available on the Unnamed Drain to Hoople Bay's classification or its fish community. The remaining six features drain into the South Raisin River. The South Raisin River flows far to the east of the site and doesn't actually reach the St. Lawrence River until Lancaster (to the east of Cornwall, in Lake St. Francis). Information was available for the South Raisin River, Unnamed Drain 1 and Unnamed Drain 3. These are all classed as Class E Drains in the LIO databases. Class E signifies that the drain has been sampled and that sensitive species (native species that are either listed as endangered, threatened, special concern or have intolerance to poor environmental conditions).

Fish community information for these features is available from the Aquatic Resource Area (ARA) data on LIO. The available information does not distinguish between what has been labelled herein as South Raisin River and Unnamed Drain 1. LIO identified 10 species as occurring in these. All are common warm to cool water forage fish (Table 1). Further downstream, to the south of the railroad, information collected by Bowfin for another unrelated project found eight species; all common warm to cool water fish species (central mudminnow, brassy minnow, northern redbelly dace, fathead, creek chub, white sucker, brook stickleback, and johnny darter). Information on LIO for a larger downstream reach list is expanded to include 26 species. That list contains sportfish and pan fish (northern pike, pumpkinseed, rock bass, and yellow perch) as well as the invasive species round goby. Those species are likely to be present within this site, more likely to be restricted to the habitats found much further downstream. There was potential pike spawning habitat on site, but they have note been recorded in this section of these channels.

There is no community information for the Unnamed Drain 2. And as mentioned, there was no defined channel on site.

The Unnamed Drain 3 has community information listing 10 common species consisting mostly of forage fish species with the exception of the pan fish pumpkinseed.

Note that the Class E drain classification may be more applicable to areas further downstream, as the fish encountered by Bowfin on Site (Section 3.4) and off Site (paragraph above) are not on the sensitive list (Mandrak and Bouvier, 2014).

No species at risk or of conservation value were listed in the LIO databases or on the DFO Aquatic Species at Risk Map (NASAR accessed August 26, 2021).

The eight (including photographs of the culvert where Unnamed Drain 2 would outlet to) are described below.

Fisheries and Oceans Pêches et Océans Canada

Unnamed Drain to Hoople Bay on the St. Lawrence River

The Unnamed Drain to Hoople Bay is situated on the far west side of the site. This feature is approximately 5.9 km long from its origin to Hoople Bay. The origin is roughly 0.8 km upstream of this site. Within the site, the feature consists of the east road ditch for Moulinette Road. Further upstream the feature parallels the Highway 401. The amount of water present in the portion on Site is likely greatly influenced by the Highway 401 water catchment area. The west bank is the very steep embankment of Moulinette Road and the lands on the east (on Site) consist of a wetland (Figure 3). The culvert under Moulinette Road appeared to be properly installed. Note that the downstream side was on a quarry and not accessed. One station was established.

Station 1

Station 1 began at the upstream end of the culvert under Moulinette Road and was 52 m in length. The average channel width was 3.1 m and the average bankfull height 27 cm. The average spring wetted width and depth were 0.8 m and 6 cm, respectively. The station was dry during the summer visit.

The substrate consisted entirely of fines and the stream morphology was a glide. The in-water cover throughout the station was provided by aquatic vegetation (broad and narrow-leaved cattails, reed canary grass, purple loosestrife, and common reed). No signs of erosion were noted.

The tops of the banks were fully vegetated on the east bank and gravel/roadway along the west bank. The most common species were reed canary grass, goldenrod, common burdock, wild red raspberry, staghorn sumac, American elm, ash and willows. The station had moderate canopy cover throughout.

Baited minnow traps were set between the access road and the culvert under Moulinette Road overnight on May 27, 2020. A total of 14 fish brook stickleback were captured (size range: 33-59 mm) in the minnow trap closest to the cross-culvert under Moulinette Road. None were captured in the trap placed further upstream. No sampling took place during the summer as the station was dry (August 31, 2020).

South Raisin River

Moving to the east, the next feature is the South Raisin River. While there is a Highway 401 culvert leading towards this channel, any water from the highway is intercepted by a swamp that does not contain any defined channels (Wetland 2). The feature began near the east-west Hydro One transmission line and travelled south through the disturbed lands to the CN railroad. The South Raisin River travels over 45 km before it reaches the North Raisin River. The portion on the site represents the first 0.8 km of this long watercourse. The culvert under the railroad is well positioned and does not pose a barrier to fish movement. A beaver dam at the downstream end, within 20 m of the railroad, is a temporary barrier to movement outside of the spring freshet. Portions of this feature was heavily impacted by the clearing activities and access roads, with a culvert in poor shape under the main access road, and ruts and slash in the channel. The channel was seasonal. As will be noted herein, fish present in a pool just upstream of the access road demonstrated that movement must be possible during the freshet.

This feature has been divided into two reaches (a and b) because of the disturbances to the riparian habitat and to the feature itself. The downstream section labelled as "a" is a defined natural feature through the wetland and "b" is the area heavily disturbed by ruts and slash.

Station 2

Station 2 began 7.0 m upstream of the confluence with Unnamed Drain 1 and was 43 m in length. A beaver dam was situated on the downstream end and acted as a temporary/seasonal barrier to fish movement.

The average channel width was 1.1 m and the average bankfull height 12 cm. The average wetted width and depth in the spring were 0.9 m and 10 cm, respectively. The station was dry during the summer visit.

The substrate consisted entirely of fines and the stream morphology was a glide. The in-water cover throughout the station was provided by aquatic vegetation (reed canary grass, purple loosestrife and narrow-leaved cattail). No signs of erosion were noted. The tops of the banks were fully vegetated. The most common species were: reed canary grass, goldenrod and slender willow. There was no canopy cover.

Station 3

Station 3 began 465 m upstream of the confluence with Unnamed Drain 1 and was 51 m in length. The average channel width was 2.7 m and the average bankfull height 29 cm. There was a beaver dam or earth barrier upstream of the access road that created a shallow pool during the spring. This pool was also dry later.

The substrate consisted mostly of fines with some gravel and cobble. The morphology was a glide along the station, and a pool upstream of the beaver dam. The in-water cover throughout the station was provided by aquatic and terrestrial vegetation (reed canar

grass, grasses, purple loosestrife, goldenrod species and wild parsnip). Areas containing small woody debris (slash) was also present. No signs of erosion were noted.

The tops of the banks were fully vegetated. The most common species were: goldenrod species, reed canary grass, wild parsnip, glossy buckthorn, willow species, American elm and ash species. There was little to no canopy cover.

Baited minnow traps were set in the pools upstream and downstream of the access road on May 27, 2020. Eight fish represented by two species were captured in the upstream pool (no fish were captured in the shallow pool downstream): 7 northern redbelly daces (size range: 37-50 mm), and 1 brook stickleback (size range: 51 mm). No sampling took place during the summer as the station was dry (August 31, 2020).

Unnamed Drain 2

While the background mapping suggests that there is an Unnamed Drain 2, no channel could be found within the wetland on site or at the upstream end. Review of the imagery suggests that the water from upstream may be blocked by the access road for the twin transmission lines. This follows with the detailed topography mapping created by others for the site. The culvert at the railroad is on a steep incline preventing fish access during all but perhaps the early spring. This feature does not provide fish habitat due to the lack of channel. It is anticipated that fish habitat is present immediately downstream of the CN Railroad culvert. Even if the culvert was repaired, there is no upstream channel for fish to access other than the ruts created by the quad trail. Since this quad trail runs east to west and as there are hills on either side, the habitat in the ruts is limited and, currently isolated. One central mudminnow was captured in the pooled water in the ruts next to this culvert.

Unnamed Drain 3

Unnamed Drain 3 originates on the other side of Avonmore Road from what appears to be a small sand pit (about 720 m from the site). The total length of the feature is 1.8 km, and it flows into the South Raisin River, 1.1 km downstream of the railroad. The portion on-site is 0.4 km long and consisted of a channelized drain. The culvert under the railroad was well-positioned and did not represent a barrier to fish movement. The feature was seasonal.

Station 6

Station 6 was located 100 m west of where it crossed Avonmore Road and was 58 m in length. The average channel width was 3.7 m and the average bankfull height 27 cm. The average wetted width and depths in the spring were 3.2 m and 9 cm, respectively. The site was dry by summer.

The substrate consisted entirely of fines and the stream morphology was a glide. The in-water cover throughout the station was provided by aquatic and terrestrial vegetation (reed canary grass, sedges, purple loosestrife, spotted joe-pye weed, goldenrod species and cow vetch). The aquatic vegetation was hummocky within the station causing the channel to flow around the mounds. No signs of erosion were noted.

The tops of the banks were fully vegetated however, on the left bank the vegetation was recently cut creating an 8 m wide path running parallel along much of the station. The most common species were: grasses, reed canary grass, goldenrod, cow vetch and slender willow. There was no canopy cover.

During the May 28, 2020, visit, the station was dip netted over an area of approximately 186 m². Three fish were captured representing 2 species: central mudminnow (size: 61 mm) and brook stickleback (size range: 38-40 mm). No sampling took place during the summer as the station was dry (August 31, 2020).

Agricultural Drains

The last three features are dug agricultural drains that flow south into Unnamed Drain 3. None provided direct fish habitat, during the surveys and while the very early spring was missed, based on the habitats, it is unlikely that they provide direct habitat at any time of the year. Note Agricultural Drain 3 is not connected to the Unnamed Drain (blocked by soil – no defined channel) and is not direct fish habitat.

Agricultural Drain 1

Agricultural Drain 1 is on the west side and is 564 m long and well-connected to Unnamed Drain 3 on the downstream end. The channel was seasonal, and portions were already dry by May 12, 2020.

Station 7

Station 7 began 5 m upstream of the confluence of Unnamed Drain 3 and was 75 m in length. The average channel width was 3.6 m and the average bankfull height 27 cm. The average springtime wetted width and depths in the spring were 1.5 m and 10 cm, respectively. The site was dry by summer.

The substrate consisted entirely of fines and the stream morphology was a glide. The upstream half of the station was heavily choked with common reed and slender willow. The in-water cover throughout the station was provided by aquatic vegetation (common reed, 🖪

(Seages, reed canary grass, spotted joe-pye weed, purple loosestime and siender willow). The aquatic vegetation was nummocky within the station causing the channel to flow around the mounds. No signs of erosion were noted.

The tops of the banks were fully vegetated. The most common species were reed canary grass and slender willow. The shrubs covered the entire channel providing full shade.

During the May 28, 2020, visit, the entire length of the headwater feature (including Station 7) was dip netted. No fish were captured or observed. No sampling took place during the summer as the station was dry (August 31, 2020).

Agricultural Drain 2

Agricultural Drain 2 is in the middle and is 567 m long and also well-connected to Unnamed Drain 3 on the downstream end. This one had a blockage roughly 180 m from the confluence with Unnamed Drain 3 that would be a temporary barrier to fish (until culvert is repaired), but again no fish were ever caught in this feature. This channel was seasonal, and portions were already dry by May 12, 2020.

Station 8

Station 8 began 5 m upstream of the confluence of Unnamed Drain 3 and was 60 m in length. The average channel width was 3.2 m and the average bankfull height 23 cm. The average springtime wetted width and depths in the spring were 1.5 m and 10 cm, respectively. The site was dry by summer.

The substrate consisted entirely of fines and the stream morphology was a glide. The upstream half of the station was heavily choked with common reed and slender willow. The in-water cover throughout the station was provided by aquatic vegetation (common reed, sedges, reed canary grass, spotted joe-pye weed, purple loosestrife and slender willow). The aquatic vegetation was hummocky within the station causing the channel to flow around the mounds.

The tops of the banks were fully vegetated. The most common species were: reed canary grass and slender willow. There was good canopy cover throughout.

During the May 28, 2020, visit, the entire length of the headwater feature (including Station 8) was dip netted. No fish were captured or observed. No sampling took place during the summer as the station was dry (August 31, 2020).

Agricultural Drain 3

Agricultural Drain 3 was on the east side and was blocked at its downstream end. This short 142 m long drain was not connected to Unnamed Drain 3 and was seasonal.

Station 9

Station 9 began 5 m upstream of the confluence of Unnamed Drain 3 and was 58 m in length. The average channel width was 3.2 m and the average bankfull height 15 cm. The feature was dry during both the spring and summer visits.

The substrate consisted entirely of fines and the stream morphology was a glide. The station was heavily choked with common reed and slender willow. The in-water cover throughout the station was provided by aquatic vegetation (common reed, sedges, reed canary grass, purple loosestrife and slender willow). No signs of erosion were noted.

The surrounding area was vegetated on the west side and consisted of reed canary grass and slender willow. The east side was tilled. The dense willows provided full shade.

No sampling took place on either of the May 28 or August 31, 2020, visits as the station was dry.

Include representative photos of affected area (including upstream and downstream area) and clearly identify the location of the project.

E) Potential Effects of the Proposed Project

Have you reviewed the Pathways of Effects (PoE) diagrams) that describe the type of cause-effect relationships that apply to your project? \bigcirc

If yes, select the PoEs that apply to your project.

*All definitions are provided in Section G of the Guidance on Submitting a Request for Review

+

-	
T	

Addition or removal of aquatic vegetation	Placement of material or structures in water				
Change in timing, duration and frequency of flow	Riparian Planting				
☐ Cleaning or maintenance of bridges or other structures					
☑ Dredging ☑ Structure removal					
Excavation	Use of explosives				
Fish passage issues	Use of industrial equipment				
C Grading	✓ Vegetation Clearing				
☐ Marine seismic surveys					
□ Organic debris management □ Water extraction					
Placement of marine finfish aquaculture site					
Will there be changes (i.e., alteration) in the fish habitat*? Yes 	🔿 No 🔿 Unknown				
If yes, provide a description.	haire harmant Ocations A and 5 fee dataile				
Note all details are available - please see accompanying fisheries ted	chnical report Sections 4 and 5 for details.				
In general, Phase A will see the realignment of two channels. One will impacted by ruts/slask) and the other will become a roadside ditch an	vill be replaced with similar habitat (but improved in that the existing is nd not fish habitat.				
 General Site: The watershed boundaries will be respected. No change to the am Hoople) or to the Raisin River Watershed (all other channels on site) The water originating from the MTO culverts on Highway 401 needs There will be no change in the amount of flow reaching each of the downstream of the railroad is not impacted. Since there was no defined channel on Site for the Unnamed Drain to the railroad culvert. It is anticipated that the three Agricultural Drains will be removed bu submission). 	ount of water flowing to the Lake St. Lawrence (Unnamed Tributary to s to be accommodated. culverts under the railroad. This will ensure that the fish habitat 2, one option being considered is urbanizing this area and piping the flow ut their contributing flow will continue to reach Unnamed Drain 3 (future				
Current submission: 1. The lower portions of the South Raisin (Watercourse F on the accompanying drawing) will be realigned into a single combined also be realigned (Table 6). 2. Four culverts will be installed on this new combined channel (Table The next steps are summarized in Table 8 and the preliminary asses 5.	ompanying drawing) and of the Unnamed Tributary 1 (Watercourse E on new channel. In the future, the upstream portion of these channels may e 7) (locations shown on accompanying drawing). sment of impacts to fish and fish habitat are discussed below, in Section				
Is there likely to be a harmful alteration, disruption or destruction of ha	abitat used by fish? 🔿 Yes 🔿 No 💿 Unknown				
Is there likely to be destruction or loss of habitat used by fish? $ullet$ Y	′es 🔿 No 🔿 Unknown				
What is the footprint (area in square meters) of your project that will t	ake place below the high water mark*?				
Phase A will impact					
Is your project likely to change water flows or water levels? \bigcirc Yes	No O Unknown				
If your project includes withdrawing water, provide source, volume, ra	ate and duration.				
3669 sq. m					
L	u raduation				

Fisheries and Oceans Pêches et Océans Canada Canada		C	an	adä
Will your project cause death of fish? 🔿 Yes 🔿 No 💿 Unknown				
If yes, how many fish will be killed (for multi-year project, provide average)? What species and lifestages?				
Fish salvage will be undertaken to minimize this impact.				
What is the time frame of your project?				
The construction will start on winter 2021 and end by MM/DD/YYYY				
If applicable, the operation will start on MM/DD/YYYY and end by MM/DD/YYYY				
If applicable, provide schedule for the maintenance				
If applicable, provide schedule for decommissioning				
Are there additional effects to fish and fish habitat that will occur outside of the time periods identified above?	۲	Yes	0	No
(If yes, provide details)				
Proponent would like to discuss the full Site to help with concept plan.				
Can you follow appropriate Timing Windows () for all your project activities below the High Water Mark*?	ullet	Yes	0	No
(If no, provide explanations.)				
Have you considered and incorporated all options for redesigning and relocating your project to avoid negative effect	s to fi	sh and	fish h	
If yes, describe.				
The site is also constrained by several existing elements:				
• The industrial and logistics village will be built around the railway yard and inter-modal staging area. The grad storage and transfer area have a very low tolerance and must be kept at approximately less than <0.5-1% grade	ing o chan	f the ra	ail yard	land

• The existing grade of the CN tracks must be maintained at less than a 1% change, including a switch that must match existing at the eastern and western end of the side-track lines.

• The CN engineering standards dictate the cover that the rail lines must maintain over culvert crossings, which further constrains the grading design.

• The existing culverts crossing the CN mainline to the south

• The alignment and grade of the natural watercourses and drainage ditches through the site (including a wetland area that the developer is working on maintaining as a naturalized area)

• The existing culvert's crossing Highway 401 on the north side of the site

• There is an at-grade crossing at Avonmore Rd., which must match exactly with existing rail lines and road grades.

Effort was made to improve the potential for fish passage through the proposed new culverts, the velocities remain higher than preferred for the lengths. Because of the constraints listed above, it is unlikely that a solution can be found for these culverts for water volumes estimated for the 1: 2 year.

+

 + 	Fisheries and Oceans Canada	Pêches et Océans Canada			Ca	ana	adä
Have you	l consulted DFO's Fish an	d Fish Habitat Protection Measures Habitat () to determine which meas	ures 💿	Ye	S	0	No
Will you b	be incorporating applicable	e measures into your project?	ullet	Ye	s	0	No
, If ves ide	entify which ones. If No. id	entify which ones and provide reasons					
		mough the new ourverte will be too fast for their rengths at the 1.2 year to					
Measure Prelimina	s that can be followed: ary Mitigation Measures						
Planning • Follow • Constru • Site ins • Clearly • All in-w • Erosior • No in-w These m	the DFO guidelines in the uct and stabilize the new of truction will be provided to demarcate work areas wi ater works to occur during and sediment control me vater work will begin until t easures must also be suff	Ir Standard Code of Practice for temporary cofferdams and end-of-pipe. channels prior to the decommissioning of the existing channels. contractor to highlight that the channel provides fish habitat. thin the riparian habitat in the field. the in-water work window (July 1 to March 14, inclusive). asures will be installed prior to the clearing of vegetation within 30 m of he area has been isolated with measures deemed appropriate by the co ficient to allow for dewatering and a fish salvage (see below) and to prev	a watercourse ontract admini vent fish from	e. strato enteri	r or p ng the	ropoi e woi	nent. rk area.
• The wo • Susper • Minimiz • All or po	rk in the channel is to be on a activities that cause mu ce clearing of woody vege ortions of the riparian corr	completed in the dry. ddy environments during periods of heavy rains. tation (few woody individuals are present). Where possible, cut the shru idor will be naturalized with native vegetation.	ıbs down (inst	ead o	f grut	bbing).
Erosion a • An eros o Provida ensuring througho Monitorir o At a mi	and Sediment Control sion and sediment control e regular maintenance to t that the erosion and sedi but the day and during rain ng for visible plumes outsi inimum, the erosion and s	plan will be developed by contractor and implemented prior to any work the erosion and sediment control measures during construction. Contra- ment control measures are maintained and will monitor the water clarity events. Water quality is to meet the Canadian Water Quality Guideline de of the work area is to be undertaken. ediment control plan will include the installation of sediment fencing alor	within 30 m c ctor shall be r downstream s for the Prote ng the top of t	f the vespon of the ection anks	water sible work of Ac	rcours for site quatione veg	se. c Life. getation
clearing a curtain d o Additio sedimen • Constru cofferdar • Note th • Any sto • The erc	and/or soil disturbance wil ownstream. nal materials (i.e. rip rap, t control. uction of cofferdam dams of m within a turbidity curtain at the meter bags can ofte ockpiles of soil or fill mater psion control measures wil	I occur within 30 m of any channel prior to the removal of vegetation. A filter cloth and silt fencing) will be readily available in case they are need can create a plume. As such, appropriate measures should be put in pla that isolates just the area where the cofferdam is being built. en split when being removed as such it is preferred that gravel be used f ial will be stored as far as possible from the channel and protected by si Il not be removed until the bank is stabilized (<20% bare soil).	nd the installa ded promptly f ace such as p for metre bags It fencing (mir	tion o or erc lacing	f a tu sion rock 30 n	rbidit and/o for t n).	y or he
The wo Water f sock on f	rk within the channels will rom dewatering will be tre the end of hose and situat	be completed in the dry. ated prior to returning it to the system (i.e. straw bale settling ponds cov red on top of well vegetated slopes).	vered by geote	xtiles	or se	edime	ent

• Water from bypass will be released in such a way as to prevent erosion or the transportation of suspended sediments downstream. Note that if this water is taken from upstream of the work area and is the same quality as the receiving waterbody on the downstream side, then it can be released directly into the system (see additional notes under fish and fish habitat protection)

 Where banks/riparian area (area within 30 m of channel) have been stabilized by seeding and/or planting, monitor the revegetation to ensure that the vegetation becomes fully established.

• Any riprap will consist of clean rock free of fines.

Fish and Fish Habitat Protection

• All material introduced for the temporary measures will be fully removed from the water at the completion of the work.

• The methods, sequencing and cofferdam design need to be determined once the project proceeds further in design.

+

Fish (and other aquatic fauna) will be salvaged from the isolated channel by a qualified biologist/technologist. The salvage will need to epeated if the work area becomes flooded. Dewatering of water in areas that may contain fish will be completed from hoses placed in fish baskets or covered with clean wash rock	be					
other such method to prevent fish impingement and entrainment. Note that the screens that come on the hoses are not enough to prevent fish irrom harm.						
Monitor the end of pump frequently for ensure that all fish protection measures are functioning. Minimize the size of temporary in-water work areas.						
Bypass flow will be required. The amount of flow bypass should be sufficient to maintain the habitats upstream and downstream of the site i.e. similar to what would be passed through the culvert). The DFO Standard Code of Practice for End-of-Pipe should be followed to ensure that fish do not become impinged or entrained. Installation of rock protection will not impede fish from passing through culverts.						
contaminant and Spill Management All equipment working in or near the water should be well maintained, clean and free of leaks. Maintenance on construction equipment s refueling, oil changes or lubrication would only be permitted in designated area located at a minimum of 30 m from the shoreline in an there sediment erosion control measures and all precautions have been made to prevent oil, grease, antifreeze or other materials from advertently entering the ground or the surface water flow. Emergency spill kits will be located on site. The crew will be fully trained on the use of clean-up materials to minimize impacts of any ccidental spills. The area would be monitored for leakage and in the unlikely event of a minor spillage the project manager would halt th ctivity and corrective measures would be implemented.	: such ⊧area ne					
Stop all work Stop all work						
ubstance includes sediments.	us					
Clean-up measures are to be appropriate and are not to result in further harm to fish/fish habitat. Sediment-laden water will be removed and disposed of appropriately.						
No construction debris will be allowed to enter the watercourse. Following the completion of construction, all construction materials will be removed from site.						
ave you considered whether DFO standards and codes of practice apply to your project? O No O Ye	2S					
Yes, include a list.						
nd of Pipe; Temporary cofferdam						
ave you considered other avoidance and mitigation measures?	ès					
Yes, include a list.						
re there any relevant measures that you are unable to incorporate?						
f yes, identify which ones.)						
elocities through culverts will be too fast for their lengths for the 1:2 year levels. Anticipated that fish will be able to pass during lo evels.	wer					
/hat harmful effects to fish and fish habitat do you foresee after taking into account the avoidance and mitigation measures described pove?						
he proposed works and design have not been finalized. At this time, the proponent would like to initiate discussions with DFO for verall Site and then for the Phase A. It is acknowledged, that the current culvert designs may pose an issue for fish passage during ows.	the 1:2					

*	Fisheries and Oceans Canada	Pêches et Océans Canada				Canada
Do these	include effects on aquatic	species at risk*?	0	Yes	\odot	No
lf yes, ple	ease describe, including h	ow many individuals will be harmed, harassed, or	otherwise affec	ted by th	ne proj	ect, and how?
Do these	include effects on areas in	dentified as their residence or critical habitat?	0	Yes	۲	No
lf yes, ple	ease describe					
Are there	any aquatic invasive spec	cies in the vicinity of your project area?	0	Yes	۲	No
(If yes, id	entify which ones.)					
Does you	r project aim to, or will it b w?	e likely to, effect any of these aquatic invasive spe	ecies? O	Yes	٢	No
F) Sign	ature					
I,		(print name) certify that the information given on	this form is to the	best of n	ny kno	wledge, correct and completed.
			MM/DE)/YYYY		
Signature	e		Date			

Information about the above-noted proposed work or undertaking is collected by DFO under the authority of the *Fisheries Act* for the purpose of administering the Fish and Fish Habitat protection provisions of the *Fisheries Act*. Personal information will be protected under the provisions of the *Privacy Act* and will be stored in the Personal Information Bank DFO-PPU-680. Under the *Privacy Act*, Individuals have a right to, and on request shall be given access to any personal information about them contained in a personal information bank. Instructions for obtaining personal information are contained in the Government of Canada's Info Source publications available at www.infosource.gc.ca or in Government of Canada offices. Information other than "personal" information may be accessible or protected as required by the provision of the *Access to Information Act*.

*All definitions are provided in Section G of the Guidance on Submitting a Request for Review

Fisheries and Oceans Pêches et Océans Canada

Canada

Guidance on Submitting a Request for Review

This document explains the requirements for a Request for Review by DFO under the fish and fish habitat protection provisions of the Fisheries Act. To determine whether you should request a review, visit DFO's Projects Near Water webpage ().

Incomplete Requests for Review will be returned to the applicant without review by DFO. All information requested must be provided. If you attach documents to your application with additional information, you must still provide appropriate summaries in the spaces provided on the application document or your application will be considered incomplete.

Section A: Contact Information

Provide the full legal name of the proponent and primary mailing address for the proponent. When the proponent is a company, identify the full legal registered name of the company.

If applicable, also provide the contact information of the duly authorized representative of the proponent. Please note that a copy of correspondence to Contractor/Agency/Consultant will also be sent to the Proponent.

Section B: Description of Project

This information is meant to provide background about the proposed project. All components of the proposed project in or near water, must be described.

Proponents should provide information about all appropriate phases of the project, i.e., the construction, operation, maintenance and closure phases for the proposed project.

All details about the construction methods to be used, associated infrastructure, permanent and temporary structure, structure type (e.g. corrugated steel pipe vs box culvert), structures dimension, building materials to be used, machinery and equipment to be used must also be provided. For example, the construction of permanent structures may require the construction of temporary structures such as temporary dikes, in conjunction with other associated activities like the withdrawal of water, land clearing, excavation, grading, infilling, blasting, dredging, installing structures, draining or removing debris from water. Similarly, the equipment and materials to be used may include hand tools, backhoes, gravel, blocks or armor stone (provide the average diameter), concrete (indicate if pre-cast or poured in-water), steel beams or wood.

Sections Cal socations in forme are proposed, provide the plan and specifications of those works which would require a review. The purpose for this information is to describe and illustrate the location of the proposed project, and to provide geographical and spatial context. The information should also facilitate an understanding of how the project will be situated in relation to existing structures.

The details to be provided must include:

 \succ Coordinates of the project (e.g., Latitude and Longitude or Universal Transverse Mercator Grid coordinates); A map(s), site plan, or diagrams indicating the high water mark and the location, size and nature of proposed and existing structures (e.g., floating or fixed), landmarks and proposed activities. In a marine setting, it may be helpful to depict the approximate location of the proposed development on a nautical chart or showing the relation of the site to sea marks or other navigational aids. These plans, maps or diagrams should be at an appropriate scale to help determine the relative size of the proposed structures and activities, the proximity to the watercourse or waterbody and the distance from existing structures;

The community nearest to the location of the proposal as means to provide a general reference point. When \geq possible, proponents should use geographical names recognized by the Geographical Names Board of Canada ().

 \triangleright If available, provide aerial photographs or satellite imagery of the water source(s) and waterbody(ies); \triangleright Names of the watershed(s), water source(s) and/or waterbody(ies) likely to be affected by the proposal; and \triangleright Brief directions to access the proposed project site.

Fisheries and Oceans Pêches et Océans Canada

Section D: Description of the Aquatic Environment

Proponents must describe the environmental context and aquatic resources present at the proposed site. The information must identify the current state of the fish and fish habitat prior to the carrying on of the project.

It is important to include information about the fish species present, the biological, chemical, physical features present (habitat characteristics), and the fish life-cycle functions (fish characteristics).

The spatial scope for assessing fish and fish habitat should encompass the direct physical footprint of the project, and the upstream and downstream areas affected.

As an example, the following is a non-exhaustive and non-prescriptive list of some common attributes which may characterize the aquatic environment:

 \geq

Type of water source or watercourse (groundwater, river, lake, marine, estuary, etc.);

Characteristics of the water source or waterbody could include:

Substrate characterization - describe the types of substrate (e.g., bedrock, boulder, cobble, gravel etc.), identify 0 the predominant substrate type (e.g., 80% cobble, 20% gravel etc.) and provide maps of the substrate;

Aquatic and riparian vegetation characterization - identify the prevalent types of vegetation (e.g. rooted. 0 submerged, emergent, etc.), identify the relative abundance of the vegetation (e.g., 10% cattails, 80% grass, 10% sedge), indicate the predominant vegetation (e.g., by species or types) and identify the vegetation densities (e.g., type of vegetation/area);

Flow characterization - specify if the flow is controlled or if it is natural, identify if the flow is permanent or 0 intermittent, identify the current and tide (marine environment) etc.;

Physical waterbody characterization - identify the average depth of water for water bodies, identify bathymetry of 0 water bodies, provide bathymetric maps where available, channel width (determine the width of the channel from the high water mark), slope ;

Water quality characterization - (e.g., annual or average pH, salinity, alkalinity, total dissolved solids, turbidity, 0 temperature etc.);

Biological water guality characterization - (e.g., benthic macro-invertebrates, zooplankton, phytoplankton, etc.) Fish species characterization - identify the fish species (including molluscs, crustaceans, etc.) known or

suspected to be in the area, predator prey relationships etc. Identify what source of information was used to determine the presence of fish in that area: and

 \geq Estimate the fish abundance - estimate the number of fish present, estimate the year class for each species etc.

There are many different methods and attributes available to characterize fish and fish habitat. Proponents must describe all sources of information used, all fish and environment sampling techniques used, all modelling techniques used and all other approaches used to define the fish and fish habitat. Proponents are encouraged to use recognized fisheries inventory methods such as those approved by DFO or provinces and territories, and/or scientifically defensible methodologies and techniques whenever possible.

Whenever possible, proponents should support descriptions of the aquatic environment with the use of detailed drawings, such as plans or maps and photographs of the habitat features. In an offshore marine setting, photos may not be useful to depict the proposed development site. Instead describe and/or sketch the specific features of the sea floor which may include the presence of submarine features such as canyons, cliffs, caverns, etc.

Section E: Potential Effects of the Proposed Project

The objective of this section is to identify all anticipated effects on fish and fish habitat likely to be caused by the project. Proponents should consider all mitigation or avoidance techniques.

The description must include qualitative and/or quantitative information about the predicted/potential effects to fish species and fish habitat. Some examples of likely effects may include mortality to fish, area of habitat loss, change to flow, changes to habitat function, reduction in prey availability etc.

*All definitions are provided in Section G of the Guidance on Submitting a Request for Review

The spatial scope of the aquatic effects assessment would include the direct physical "footprint" of the proposed project, and any areas indirectly affected, such as downstream or upstream areas. The footprint of each component of the project below the higher water mark should be provided individually. This may also include areas in or on the water, on the shoreline, coast or bank(s) (i.e., in the riparian zone).

The assessment must include the following attributes:

Identification of all fish species affected by the proposed project as well as their life stages (e.g., juvenile, yearling, adult, etc.); Identification of the type of fish habitat affected (e.g., spawning habitat - gravel and cobble, feeding and rearing areas - side channel slough, small tributaries, etc.), estimate of the affected area (e.g., square meters or hectares); Description of the effect (e.g., mortality to fish from entrapment, delayed migration of spawning adults, reduction \geq in prev availability, etc.) Probability of the effect - this is the likelihood of the effect occurring (e.g., probability of fish strike from turbines for specific fish sizes, probability of sediment plume within a distance from source, etc., or qualitative assessment: low, medium, high) Magnitude of the effect - this is the intensity or severity of the effect (e.g., total number of fish affected, or qualitatively assessment: low, medium, high). Geographic extent of the effect - this is the spatial range of the effect (e.g., localized to 100m from the work, channel reach or lake region, entire watershed etc.); and Duration of the effect - this is the temporal period for which the effect will persist (e.g., duration of delay to fish migration in hours, days, months or years).

The information to be provided must also describe the methods and techniques used to conduct the assessment. As much as possible, methods and techniques used should be scientifically defensible.

The schedule should, at minimum, identify the proposed start and end dates for carrying out each proposed activity, and where applicable, identify the respective phase of the proposal; i.e., the construction, operation, maintenance and closure phases. In some cases, in order to provide additional context, it may be relevant to identify other information such as the expected life span of permanent and temporary structures.

Proponents must provide comprehensive information about all available measures that are proposed to avoid or mitigate potential harmful alteration, disruption or destruction of fish habitat, or death of fish (e.g., in standards or codes of practice).

Residual harmful impacts that remain after the application of such measures.

It is important to clearly describe and quantify harmful impacts because DFO will use this information as part of its decision making on whether harmful alteration, disruption or destruction of fish habitat or death of fish is likely and an authorization is required under subsection 35(2)(b) or 34.4(2)(b) of the Fisheries Act.

Section F: Submission and Signature

The proponent must sign their application. A signed original of the Request for Review must be provided to the regional DFO office (), even if an

Section G: Definitions

Aquatic Species at Risk: an extirpated, endangered, threatened species, or a species of special concern. A non-exhaustive list of aquatic species at risk found in Canadian waters can be found here (http://www.dfo-mpo.gc.ca/species-especes/sara-lep/identify-eng.html).

Aquatic Species at Risk Critical Habitat

the habitat that is necessary for the survival or recovery of a listed wildlife species and that is identified as the species critical habitat in the recovery strategy or in an action plan for the species.

Canada

Fisheries and Oceans Pêches et Océans Canada

Aquatic Species at Risk Residence: the specific dwelling place, such as a den, nest or other similar area or a place that is occupied or habitually occupied by one or more individuals during all or part of their life cycles, including breeding, rearing, staging, wintering, feeding, or hibernating.

Aquatic invasive species: are fish, invertebrate or plant species that have been introduced into a new aquatic environment, outside of their natural range. Once introduced, aquatic invasive species populations can grow guickly because they don't have natural predators in their new environment. As a result, they can outcompete and harm native species. They can even alter habitats to make them inhospitable for the native species. A non-exhaustive list of aquatic invasive species can be found here (http://www.dfo-mpo.gc.ca/species-especes/ais-eae/identify-eng.html).

Emergency circumstance: If your project must be conducted in response to an emergency, you may apply for an Emergency Authorization. The emergency situations are:

- \geq The project is required as a matter of national security
- \geq The project is being conducted in response to a national emergency where special temporary measures are being taken under the federal Emergencies Act
- The project is required to address an emergency that poses a risk to public health or safety or to the environment or property. \geq

Fish habitat: means habitat that can directly or indirectly support life processes. This includes but is not limited to: spawning grounds, nursery, rearing, food supply and migration areas.

Harmful alteration, disruption or destruction means any temporary or permanent change to fish habitat that directly or indirectly impairs the habitat's capacity to support one or more life processes of fish.

High Water Mark: The usual or average level to which a body of water rises at its highest point and remains for sufficient time so as to leave a mark on the land.

348 Moulinette & 5400 Avonmore Road

Fisheries Technical Report

Prepared for:

Avenue 31 Capital Inc. 801-250 City Centre Avenue Ottawa, Ontario K1R 6K7

Prepared by:

Bowfin Environmental Consulting Inc. 168 Montreal Road Cornwall, Ontario K6H 1B3

August 2021

List of Acronyms and Definitions

DFO – Fisheries and Oceans Canada
ESA - Endangered Species Act (Provincial)
FL – Fork Length
GPS – Global Positioning System
NAD 83: North American Datum 1983
UTM: Universal Transverse Mercator
LIO - Land Information Ontario
NHIC – Natural Heritage Information Centre
MTO – Ministry of Transportation Ontario
NASAR – National Aquatic Species at Risk
OMNR/MNRF - Ontario Ministry of Natural Resources (old name)
-Ministry of Natural Resources and Forestry (new name)
OP – Official Plan
PSW - Provincially Significant Wetland
RRCA - Raisin Region Conservation Authority
SAR - Species at Risk (in this report they refer to species that are provincially or federally listed as
endangered or threatened and receive protection under ESA or SARA)
SARA - Species at Risk Act (Federal)
SARO - Species at Risk in Ontario
SD&G – Stormont, Dundas, and Glengarry

TL – Total Length

SRANK DEFINITIONS

- **S1** Critically Imperiled in the nation or state/province because of extreme rarity (often 5 or fewer occurrences) or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the state/province.
- **S2** Imperiled in the nation or state/province because of rarity due to very restricted range, very few populations (often 20 or fewer), steep declines, or other factors making it very vulnerable to extirpation from the nation or state/province.
- **S3** Vulnerable in the nation or state/province due to a restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors making it vulnerable to extirpation.
- **S4** Apparently Secure; uncommon but not rare; some cause for long-term concern due to declines or other factors.
- **S5** Secure; Common, widespread, and abundant in the nation or state/province.
- ? Inexact Numeric Rank—Denotes inexact numeric rank
- **SNA** Not Applicable, A conservation status rank is not applicable because the species is not a suitable target for conservation activities.
- S#B Breeding
- S#N Non-Breeding

SARA STATUS DEFINITIONS

- **END** Endangered: a wildlife species facing imminent extirpation or extinction.
- **THR** Threatened: a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction.
- **SC** Special Concern, a wildlife species that may become threatened or endangered because of a combination of biological characteristics and identified threats.

SARO STATUS DEFINITIONS

- **END** Endangered: A species facing imminent extinction or extirpation in Ontario which is a candidate for regulation under Ontario's ESA.
- **THR** Threatened: A species that is at risk of becoming endangered in Ontario if limiting factors are not reversed.
- **SC** Special concern: A species with characteristics that make it sensitive to human activities or natural events.

Coefficient of Conservatism Ranking Criteria

- 0 Obligate to ruderal areas.
- 1 Occurs more frequently in ruderal areas than natural areas.
- 2 Facultative to ruderal and natural areas.
- 3 Occurs less frequent in ruderal areas than natural areas.
- 4 Occurs much more frequently in natural areas than ruderal areas.
- 5 Obligate to natural areas (quality of area is low).
- 6 Weak affinity to high-quality natural areas.
- 7 Moderate affinity to high-quality natural areas.
- 8 High affinity to high-quality natural areas.
- 9 Very high affinity to high-quality natural areas.
- 10 Obligate to high-quality natural areas.

Table of Contents

1.0	INTRODUCTION
2.0	METHODS
2.1	Background Review
2.2	Field Studies
2.2.1	Fish Habitat Description
2.2.2	Fish Community Sampling
3.0	RESULTS
3.1	Location
3.2	Background Review
3.3	Site Investigation Summary
3.4	Fish Habitat and Fish Communities
3.5	Fish and Fish Habitat Discussion
4.0	SUMMARY OF WORKS, UNDERTAKINGS AND ACTIVITIES 42
5.0	EVALUATION AND ASSESSMENT OF PHASE A 46
5.1	Preliminary Impact Assessment Methods
5.2	Phase A - Evaluation of Potential Impacts and Mitigation to Fish and Fish Habitat 47
5.2.1	Fish and Fish Habitat Discussion
5.2.2	Factors to be Considered
6.0	REFERENCES

List of Figures

Figure 1: General Location of Site	
Figure 2: Site Details	9
Figure 3: Fish Habitat and Community Results	
Figure 4: Fish Habitat Classification	

List of Tables

Table 1: Background Fish Community Information from LIO Databases	. 15
Table 2: Summary of Dates and Times of Site Investigations	. 18
Table 3: Summary of Fish Captured at Station 4	. 27
Table 4: Summary of Catch from Station 5 (May 27, 2021)	. 29

Table 5: Summary of Fish Habitat and Recommendations (including Headwater Assessment)	
Recommendations)	. 39
Table 6: Summary of Changes to Channels Associated with Phase A	. 43
Table 7: Summary of Proposed Culverts (see accompanying drawing for locations)	. 43
Table 8: Summary of Fish Habitat, and Timing of Works, Activities and Undertakings	. 44

1.0 INTRODUCTION

Avenue 31 (Capital) Inc. as part of a Joint-Venture with Crews Rail (under the corporation of Camino LVS) is proposing to construct an industrial and logistics village in Long Sault, Ontario. This is a major infrastructure project for Eastern Ontario. The central piece of infrastructure is a large inter-modal rail yard and will include full-length unit train tracks that are connected along 2 km of the existing CN Mainline (Kingston Subdivision). This development is currently in functional design for Phase A, with the proponent working through the detailed engineering design review process with CN for the rail yard and siding tracks. The site is within the settlement area of the Village of Long Sault (Township of South Stormont), and is zoned for Heavy Industrial Development. The developer will be applying for Site Plan Control approval in Fall, 2021 and a Site Alteration permit from the Raisin River Conservation Authority. While details on Phase A are generally understood, the works, activities and/or undertakings that may impact fish and fish habitat for the entire site are still under development. A Site Plan control application for Phase A will be submitted to the Township of South Stormont in October, 2021.

The subject lands are approximately 325 hectares situated on part of Lots 31-37, Concession 5 in the Township of Cornwall, United Counties of Stormont, Dundas, and Glengarry (SD&G). They are bordered by the railroad to the south, Highway 401 to the north, Moulinette Road to the west and Avonmore Road to the east (Figure 1 and Figure 2). Bowfin Environmental Consulting Inc. (Bowfin) has been retained by the proponent to assist with the natural heritage assessments. In 2020, Bowfin completed an Existing Conditions and a Headwater Drainage Features Assessment report. Now that the project is moving forward, the proponent is looking to combine flows from some channels, realign the watercourses and install new culverts. As such, the information pertaining to fish and fish habitat collected previously has been summarized herein for review by Fisheries and Oceans Canada (DFO) and forms the draft Fisheries Impact Assessment (FIA) report. This report is draft, as this is a large site and details on works, undertakings and activities that may impact fish and fish habitat have not been finalized. The preliminary concept is provided herein to provide DFO the opportunity to comment. The local conservation authority (Raisin River Conservation Authority, RRCA) was and continues to be consulted.

The FIA has been completed under the current *Fisheries Act* (FA) which came into force on August 28, 2019. The updated FA returns to wording from the earlier version. It prohibits the following:

- Death of Fish (Section 34.4)
- Harmful alteration, disruption, or destruction of Fish Habitat (Section 35)
- Ministerial powers to ensure the free passage of fish or the protection of fish or fish habitat with respect to existing obstructions (Section 34.3)

The DFO website, accessed on August 26, 2021, indicates that any activity or projects that may affect fish habitat needs to be reviewed by DFO unless there is a Standard Code of Practice. At this time, the Standard Codes of Practice do not cover the works proposed.

Figure 1: General Location of Site

Figure 2: Site Details

Summary of Works

The site includes two watersheds: Lake St. Lawrence of the St. Lawrence River (upstream of Moses-Saunders Dam in Cornwall) and Raisin River watershed (which flows into the Lake Francis reach of the St. Lawrence River, downstream of the Moses-Saunders Dam. The Raisin River outlets far downstream, roughly 32 km from the site, as the crow flies).

As shown on Figure 2, the Existing Conditions and the Headwater Drainage Feature Assessment reports identified eight potential features of which only seven were present:

Lake St. Lawrence Watershed:

1. Unnamed Drain to Hoople Bay (Moulinette Road ditch)

Raisin River Watershed

- 2. South Raisin River
- 3. Unnamed Drain 1 (merges with South Raisin River along edge of site)
- 4. Unnamed Drain 2 (no channel present on site and is not fish habitat, there is a channel downstream)
- 5. Unnamed Drain 3 (originates from the northeast side of Avonmore Road)
- 6. Three agricultural drains that flow into Unnamed Drain 3.

Of these, fish were captured in the Unnamed Drains and the South Raisin River. None were present in the agricultural drains.

The lands through which the channels belonging to the Raisin River Watershed flow were cleared by others and are now heavily disturbed and at various stages of revegetation. There are ruts and slash across parts of these fish bearing channels as well as collapsed culverts. Regardless, fish were captured on the upstream side of the primary access trails of the three watercourses present (Figure 3). Since these areas were dry later in the season, this suggests that all are seasonal, but that fish passage continues to be possible during the early spring.

To help with the review, a brief description of each feature is provided here. More details and photographs collected from the sampling stations is provided further down in the report.

Unnamed Drain to Hoople Bay on the St. Lawrence River

The Unnamed Drain to Hoople Bay is situated on the far west side of the site. This feature is approximately 5.9 km long from its origin to Hoople Bay. The origin is roughly 0.8 km upstream of this site. Within the site, the feature consists of the east road ditch for Moulinette Road. Further upstream the feature parallels the Highway 401. The amount of water present in the portion on-site is greatly influenced by the Highway 401 water catchment area. The west side is the steep embankment of Moulinette Road. The lands on-site consist of a wetland (Figure

2). The culvert under Moulinette Road appeared to be properly installed, note that the downstream side was on a quarry and not accessed.

South Raisin River

Moving to the east, the next feature is the South Raisin River. While there is a Highway 401 culvert leading towards this channel, water from the highway is intercepted by a swamp that does not contain any defined channels. The defined channel began near the east-west Hydro One transmission line and continues south through the disturbed lands to the CN railroad. The South Raisin River travels over 45 km before it reaches the North Raisin River. The portion of the headwaters on the site represents the first 0.8 km of this long feature. The culvert under the railroad is well positioned and does not pose a barrier to fish movement. Temporary barriers in the form of a beaver at the downstream end, within 20 m of the railroad, were present and are a barrier to movement outside of the spring freshet. Portions of this feature was heavily impacted by the clearing activities (undertaken in the past by others) and access roads, with a culvert in poor shape under the primary access trail, and ruts and slash in the channel. The channel was seasonal. As will be noted herein, fish present in a pool just upstream of the primary access trail demonstrated that movement must be possible during the freshet.

Unnamed Drain 1

The next feature is Unnamed Drain 1 which is a tributary to the South Raisin River; connecting on Site, upstream of the CN railroad. Background mapping shows this feature to be 2.6 km long, beginning 0.3 km upstream of Highway 401 and merging with the South Raisin River just upstream of the culvert under the railroad. Investigations completed for this project found that the actual channel was closer to 1.2 km long, originating inside of the wetland found on the northeast side of the site. The wetland both on and offsite was walked, and no defined channels could be found. Like the South Raisin River, any flow that this feature receives from the Highway 401 catchment, or upstream areas, is absorbed by the large wetlands. There were several beaver dams on this feature including a larger one near the railroad which created a pond. While the pond remained wet longer than the rest of the feature, it too was dry by the end of August 2020.

Unnamed Drain 2

While the background mapping suggests that there is an Unnamed Drain 2, no channel could be found within the wetland or further upstream. Review of the imagery suggests that the water from upstream may be blocked by the access road for the twin transmission lines. The culvert at the railroad is on a steep incline preventing fish access. The culvert may have disconnected under the rail road as there is a water line suggesting that it was previously submerged. There is a quad trail running along the railroad that captured water in the ruts, but this area was isolated from all other fish habitat by the hills. A central mudminnow was captured in the quad trail.

Unnamed Drain 3

Unnamed Drain 3 originates on the other side of Avonmore Road from what appears to be a small sand pit (about 720 m from the site). The total length of the feature is 1.8 km, and it flows into the South Raisin River, 1.1 km downstream of the railroad. The portion on-site is 0.4 km long and consisted of a channelized drain. The culvert under the railroad was well-positioned and did not represent a barrier to fish movement. The feature was seasonal.

Three Agricultural Drains

The last three features are dug agricultural drains that flow from north to south into Unnamed Drain 3 (Figure 2). Agricultural Drain 1 is on the west side and is 564 m long and well-connected to Unnamed Drain 3 on the downstream end. The channel was seasonal, and portions were already dry by May 12, 2020.

Agricultural Drain 2 is in the middle and is 567 m long and also well-connected to Unnamed Drain 3 on the downstream end. A blocked culvert, from an old farm crossing, roughly 180 m upstream from the confluence with Unnamed Drain 3, would be a barrier to fish passage (Figure 3). This channel was seasonal, and portions were already dry by May 12, 2020.

Agricultural Drain 3 was on the east side and was blocked at its downstream end. This short 142 m long drain was not connected to Unnamed Drain 3 and had seasonal water (standing) but is not accessible to fish during any part of the year.

2.0 METHODS

Work undertaken for the completion of this project included a background review of existing information and field investigations.

2.1 Background Review

A search through available records and available consulting reports was made to gather existing information on the fish habitat and community within the project area. The following web sources were used during the background review: Land Information Ontario (LIO), Natural Heritage Information Centre (NHIC), Species at Risk (limited to fish species protected under provincial or federal legislation), DFO Aquatic Species at Risk Distribution (on-line). Citizen science database iNaturalist was also consulted.

2.2 Field Studies

2.2.1 Fish Habitat Description

To assess the potential impacts to fish habitat, fish communities or fish species at risk (SAR) the aquatic habitats within the study area were assessed based on the point observation technique used by *Ontario Stream Assessment Protocol* (Stanfield, 2013) and the Ministry of Transportation of Ontario (MTO)'s *Environmental Guide for Fish and Fish Habitat October 2006* (MTO, 2006). The channel morphology was described using evenly spaced transects upon which data was recorded from evenly spaced observation points. The data collected included: channel width, wetted width, bankfull depth, water depth, substrate size, morphological units, and in-stream cover.

2.2.2 Fish Community Sampling

Fish community sampling was performed to document the use of the site by fish during the spring of 2020. The community was sampled using dip net and minnow traps. Minnow traps were baited and set overnight. As this work took place in 2020, due to Covid-19 restrictions, the early spring survey period was missed.

3.0 RESULTS

3.1 Location

The study area is situated between Highway 401, the CN mainline railroad, Moulinette Road and Avonmore Road. It includes parts of Lots 31-37, Concession 5 in the Township of Cornwall (centroid UTM NAD83 18T 509011 m E 4988200 m N or latitude 45.047199° longitude-74.885575°). The Site covers two watersheds. The nearest populated area is Long Sault (Township of South Stormont), situated roughly 0.7 km to the south.

3.2 Background Review

The site includes two watersheds: Lake St. Lawrence of the St. Lawrence River (upstream of Moses-Saunders Dam in Cornwall) and Raisin River watershed (which flows into the Lake Francis reach of the St. Lawrence River, downstream of the Moses-Saunders Dam. This river outlets far downstream, roughly 32 km from the site, as the crow flies).

As mentioned in the introduction, while there were eight candidate features, only seven were present on site. The Unnamed Drain 2 had no defined channel on-site. All other seven features were headwaters. There was no nearby information available on the Unnamed Drain to Hoople Bay's classification or its fish community. The remaining six features drain into the South Raisin River. The South Raisin River flows far to the east of the site and doesn't actually reach

the St. Lawrence River until Lancaster (to the east of Cornwall, in Lake St. Francis). Information was available for the South Raisin River, Unnamed Drain 1 and Unnamed Drain 3. These are all classed as Class E Drains in the LIO databases. Class E signifies that the drain has been sampled and that sensitive species (native species that are either listed as endangered, threatened, special concern or have intolerance to poor environmental conditions).

Fish community information for these features is available from the Aquatic Resource Area (ARA) data on LIO. The available information does not distinguish between what has been labelled herein as South Raisin River and Unnamed Drain 1. LIO identified 10 species as occurring in these. All are common warm to cool water forage fish (Table 1). Further downstream, to the south of the railroad, information collected by Bowfin for another unrelated project found eight species; all common warm to cool water fish species (central mudminnow, brassy minnow, northern redbelly dace, fathead, creek chub, white sucker, brook stickleback, and johnny darter). Information on LIO for a larger downstream reach list is expanded to include 26 species. That list contains sportfish and pan fish (northern pike, pumpkinseed, rock bass, and yellow perch) as well as the invasive species round goby. Those species are likely to be present within this site, more likely to be restricted to the habitats found much further downstream. There was potential pike spawning habitat on site, but they have note been recorded in this section of these channels.

There is no community information for the Unnamed Drain 2. And as mentioned, there was no defined channel on site.

The Unnamed Drain 3 has community information listing 10 common species consisting mostly of forage fish species with the exception of the pan fish pumpkinseed.

Note that the Class E drain classification may be more applicable to areas further downstream, as the fish encountered by Bowfin on Site (Section 3.4) and off Site (paragraph above) are not on the sensitive list (Mandrak and Bouvier, 2014).

No species at risk or of conservation value were listed in the LIO databases or on the DFO Aquatic Species at Risk Map (NASAR accessed August 26, 2021).

Species Name	Scientific Name	Trophic Class	Thermal Regime	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	South Raisin River / Unnamed Drain 1 (onsite)	Unnamed Drain 3	South Raisin River (D/S)	References
Northern Pike	Esox lucius	carnivore	cool	S 5	No Status	No Status			Y	LIO, 2018
Central Mudminnow	Umbra limi	invertivore	cool	S5	No Status	No Status	Y	Y	Y	LIO, 2018; Bowfin, 2018
Spotfin Shiner	Cyprinella spiloptera	invertivore/ herbivore	warm	S 4	No Status	No Status			Y	LIO, 2018
Common Carp	Cyprinus carpio	invertivore/ detritivore	warm	SNA	No Status	No Status			Y	LIO, 2018
Brassy Minnow	Hybognathu s hankinsoni	planktivore/ detritivore	cool	S5	No Status	No Status		Y		LIO, 2018
Common Shiner	Luxilus cornutus	invertivore	cool	S5	No Status	No Status			Y	LIO, 2018
Golden Shiner	Notemigonu s crysoleucas	invertivore/h erbivore	cool	S5	No Status	No Status			Y	LIO, 2018
Blacknose Shiner	Notropis heterolepis	invertivore/ herbivore	cool	S 5	No Status	No Status			Y	LIO, 2018
Sand Shiner	Notropis stramineus	invertivore/ detritivore	warm	S4	No Status	No Status	Y			LIO, 2018
Northern Redbelly Dace	Chrosomus eos	invertivore/ planktivore	cool	S5	No Status	No Status	Y		Y	LIO, 2018; Bowfin, 2018
Finescale Dace	Chrosomus neogaeus	Invertivore/p lanktivore	cool	S 5	No Status	No Status	Y	Y		LIO, 2018
Bluntnose Minnow	Pimephales notatus	detritivore	warm	S 5	No Status	No Status	Y		Y	LIO, 2018

Table 1: Background Fish Community Information from LIO Databases

Species Name	Scientific Name	Trophic Class	Thermal Regime	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	South Raisin River / Unnamed Drain 1 (onsite)	Unnamed Drain 3	South Raisin River (D/S)	References
Fathead Minnow	Pimephales promelas	detritivore/ invertivore	warm	S 5	No Status	No Status			Y	Bowfin , 2018
Creek Chub	Semotilus atromaculat us	invertivore/ carnivore	cool	S5	No Status	No Status	Y	Y	Y	LIO, 2018; Bowfin, 2018
White Sucker	Catostomus commersonii	invertivore/ detritivore	cool	S5	No Status	No Status	Y	Y	Y	LIO, 2018; Bowfin, 2018
Brown Bullhead	Ameiurus nebulosus	invertivore/ herbivore/ carnivore	warm	S5	No Status	No Status		Y	Y	LIO, 2018
Tadpole Madtom	Noturus gyrinus	invertivore/ planktivore	warm	S4	No Status	No Status			Y	LIO, 2018
Banded Killifish	Fundulus diaphanus	invertivore/ planktivore	cool	S5	No Status	No Status		Y	Y	LIO, 2018
Brook Stickleback	Culaea inconstans	planktivore/ invertivore	cool	S 5	No Status	No Status	Y	Y	Y	LIO, 2018; Bowfin, 2018
Rock Bass	Ambloplites rupestris	invertivore/c arnivore	cool	S 5	No Status	No Status			Y	LIO, 2018
Pumpkinseed	Lepomis gibbosus	invertivore/ carnivore	warm	S5	No Status	No Status		Y	Y	LIO, 2018
Largemouth Bass	Micropterus salmoides	invertivore/ carnivore	warm	S5	No Status	No Status			Y	LIO, 2018
Iowa darter	Etheostoma exile	invertivore	cool	S5	No Status	No Status	Y	Y	Y	LIO, 2018
Fantail Darter	Etheostoma flabellare	invertivore	cool	S4	No Status	No Status			Y	LIO, 2018

Species Name	Scientific Name	Trophic Class	Thermal Regime	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	South Raisin River / Unnamed Drain 1 (onsite)	Unnamed Drain 3	South Raisin River (D/S)	References
Johnny Darter	Etheostoma nigrum	invertivore	cool	S5	No Status	No Status	Y		Y	LIO, 2018; Bowfin, 2018
Tessellated Darter	Etheostoma olmstedi	invertivore	cool	S4	No Status	No Status				LIO, 2018
Yellow Perch	Perca flavescens	invertivore/ carnivore	cool	S 5	No Status	No Status			Y	LIO, 2018
Logperch	Percina caprodes	invertivore	warm	S5	No Status	No Status			Y	LIO, 2018
Round Goby	Neogobius melanostom us	invertivore	cool	SNA	No Status	No Status			Y	LIO, 2018
Number of Species							10	10	25	
Y	Represents a species present in the respective watercourse									

(DFO, 2019; Bowfin, 2018; Eakins, 2018; LIO, 2018; MNRF, 2017; MTO, 2006)

Status Updated: October 2, 2018

SRANK DEFINITIONS

- S4 Apparently Secure, Uncommon but not rare; some cause for long-term concern due to declines or other factors.
- S5 Secure, Common, widespread, and abundant in the nation or state/province.
- SNA Not Applicable, A conservation status rank is not applicable because the species is not a suitable target for conservation activities.

3.3 Site Investigation Summary

As mentioned above, several site visits were undertaken. A summary of the dates, times, ambient conditions, and purpose for the visits that collected information on fish or fish habitat are provided in Table 2.

Date	Time (h)	Staff	Air Temperature (Min-Max) °C	Cloud Cover (%) Beaufort Wind Scale [Descriptor (scale)]	Moon Visibility (%)	Purpose
May 11, 2020	1000- 1430	M. Lavictoire	8.0 (1.2-10.2)	Overcast Wind: light breeze (2), changing to light air (1)	n/a	- Initial visit -Spring flow assessment
May 12, 2020	0900- 1200	M. Lavictoire	5.0-6.0 (-2.8-7.8)	Clear skies Wind: light breeze (2) changing to gentle breeze (3)	n/a	- Initial visit -Spring flow assessment
May 20, 2020	0800- 1245 2000- 2100	M. Lavictoire	12.0-19.0 (6.0-23.5)	Clear skies Wind: light air (1) changing to calm (0)	n/a	- Feature delineation - Late spring flow assessment
May 27, 2020	1600- 1800	M. Lavictoire	36.0 (19.0-34.8)	Partly cloudy Wind: light breeze (2) to gentle breeze (3)	n/a	- Fish community sampling
May 28, 2020	0600- 1045 0745- 1015	C. Fontaine M. Lavictoire	21.0-29.0 (19.5-30.0)	Partially cloudy changing to cloudy Wind: light breeze (2) changing to calm (0)	n/a	- Fish community sampling
July 10, 2020	0800- 0845	S. Lafrance	24.0 (21.2-36.4)	Clear skies Wind: calm (0)	n/a	- Summer flow assessment
August 31, 2020	0830- 1315 0900- 1130	C. Fontaine M. Lavictoire	14.0-19.0 (9.7-21.5)	Clear skies Wind: calm (0) changing to light breeze (2)	n/a	- Fish habitat description

Table 2	: Summary	of Dates	and Times	of Site	Investigations
1 4010 2	. Dummury	or Dutes	und mines	or brie	mvesuguions

M. Lavictoire – Michelle (Nunas) Lavictoire – B. Sc. Wildlife Resources and M.Sc. Natural Resources

C. Fontaine - Cody Fontaine - Fisheries and Wildlife Technologist

S. Lafrance – Sophie Lafrance – B.Sc. Biology and graduate diploma in Ecosystem Restoration

*Min-Max Temp Taken From: Environment Canada. National Climate Data and Information Archive. Cornwall. Available <u>http://climate.weatheroffice.gc.ca/</u> [October 6, 2020]

3.4 Fish Habitat and Fish Communities

The eight (including photographs of the culvert where Unnamed Drain 2 would outlet to) are described below.

Unnamed Drain to Hoople Bay on the St. Lawrence River

The Unnamed Drain to Hoople Bay is situated on the far west side of the site. This feature is approximately 5.9 km long from its origin to Hoople Bay. The origin is roughly 0.8 km upstream of this site. Within the site, the feature consists of the east road ditch for Moulinette Road. Further upstream the feature parallels the Highway 401. The amount of water present in the portion on Site is likely greatly influenced by the Highway 401 water catchment area. The west bank is the very steep embankment of Moulinette Road and the lands on the east (on Site) consist of a wetland (Figure 3). The culvert under Moulinette Road appeared to be properly installed. Note that the downstream side was on a quarry and not accessed. One station was established.

Station 1

Station 1 began at the upstream end of the culvert under Moulinette Road and was 52 m in length. The average channel width was 3.1 m and the average bankfull height 27 cm. The average spring wetted width and depth were 0.8 m and 6 cm, respectively. The station was dry during the summer visit.

The substrate consisted entirely of fines and the stream morphology was a glide. The in-water cover throughout the station was provided by aquatic vegetation (broad and narrow-leaved cattails, reed canary grass, purple loosestrife, and common reed). No signs of erosion were noted.

The tops of the banks were fully vegetated on the east bank and gravel/roadway along the west bank. The most common species were reed canary grass, goldenrod, common burdock, wild red raspberry, staghorn sumac, American elm, ash and willows. The station had moderate canopy cover throughout.

Baited minnow traps were set between the access road and the culvert under Moulinette Road overnight on May 27, 2020. A total of 14 fish brook stickleback were captured (size range: 33-59 mm) in the minnow trap closest to the cross-culvert under Moulinette Road. None were captured in the trap placed further upstream. No sampling took place during the summer as the station was dry (August 31, 2020).

Photo 1: Unnamed Drain to Hoople Bay (May 11, 2020)

Photo 2: Station 1 looking upstream from downstream (August 31, 2020)

Figure 3: Fish Habitat and Community Results

South Raisin River

Moving to the east, the next feature is the South Raisin River. While there is a Highway 401 culvert leading towards this channel, any water from the highway is intercepted by a swamp that does not contain any defined channels (Wetland 2). The feature began near the east-west Hydro One transmission line and travelled south through the disturbed lands to the CN railroad. The South Raisin River travels over 45 km before it reaches the North Raisin River. The portion on the site represents the first 0.8 km of this long watercourse. The culvert under the railroad is well positioned and does not pose a barrier to fish movement. A beaver dam at the downstream end, within 20 m of the railroad, is a temporary barrier to movement outside of the spring freshet. Portions of this feature was heavily impacted by the clearing activities and access roads, with a culvert in poor shape under the main access road, and ruts and slash in the channel. The channel was seasonal. As will be noted herein, fish present in a pool just upstream of the access road demonstrated that movement must be possible during the freshet.

This feature has been divided into two reaches (a and b) because of the disturbances to the riparian habitat and to the feature itself. The downstream section labelled as "a" is a defined natural feature through the wetland and "b" is the area heavily disturbed by ruts and slash.

Station 2

Station 2 began 7.0 m upstream of the confluence with Unnamed Drain 1 and was 43 m in length. A beaver dam was situated on the downstream end and acted as a temporary/seasonal barrier to fish movement.

The average channel width was 1.1 m and the average bankfull height 12 cm. The average wetted width and depth in the spring were 0.9 m and 10 cm, respectively. The station was dry during the summer visit.

The substrate consisted entirely of fines and the stream morphology was a glide. The in-water cover throughout the station was provided by aquatic vegetation (reed canary grass, purple loosestrife and narrow-leaved cattail). No signs of erosion were noted. The tops of the banks were fully vegetated. The most common species were: reed canary grass, goldenrod and slender willow. There was no canopy cover.

Photo 3: South Branch Raisin, reach "a" (May 11, 2020)

Photo 4: Station 2 looking downstream from downstream (August 31, 2020)

Station 3

Station 3 began 465 m upstream of the confluence with Unnamed Drain 1 and was 51 m in length. The average channel width was 2.7 m and the average bankfull height 29 cm. There was a beaver dam or earth barrier upstream of the access road that created a shallow pool during the spring. This pool was also dry later.

The substrate consisted mostly of fines with some gravel and cobble. The morphology was a glide along the station, and a pool upstream of the beaver dam. The in-water cover throughout the station was provided by aquatic and terrestrial vegetation (reed canary grass, grasses, purple loosestrife, goldenrod species and wild parsnip). Areas containing small woody debris (slash) was also present. No signs of erosion were noted.

The tops of the banks were fully vegetated. The most common species were: goldenrod species, reed canary grass, wild parsnip, glossy buckthorn, willow species, American elm and ash species. There was little to no canopy cover.

Baited minnow traps were set in the pools upstream and downstream of the access road on May 27, 2020. Eight fish represented by two species were captured in the upstream pool (no fish were captured in the shallow pool downstream): 7 northern redbelly daces (size range: 37-50 mm), and 1 brook stickleback (size range: 51 mm). No sampling took place during the summer as the station was dry (August 31, 2020).

Photo 5: Culvert at access road (May 27, 2020)

Photo 6: South Branch Raisin, reach "b" (May 11, 2020)

Photo 7: Station 3 looking upstream from downstream (August 31, 2020)

Unnamed Drain 1

Unnamed Drain 1 is a tributary to the South Raisin River; reaching the South Raisin River on Site, near the CN railroad. Background mapping shows this feature to be 2.6 km long, beginning 0.3 km upstream of Highway 401 and merging with the South Raisin River just upstream of the culvert under the railroad. Investigations completed for this project found that the actual channel was closer to 1.2 km long, originating inside of the wetland found on the northeast side of the site (Wetland 3). Like the South Raisin River, any flow that this feature receives from the Highway 401 catchment, or upstream areas, is absorbed by the large wetland. There were several beaver dams on this feature. The first ones encountered were in Wetland 3, near the access road. The larger one was near the railroad which created a pond (in Wetland 4). While the pond remained wet longer than the rest of the feature, it too was dry by the end of August.

Also, like the South Raisin River, this feature is separated in sections because of the habitat differences. There are three distinct reaches on site; 1a and c are part of wetlands, and 1b is disturbed by ruts and slash between the two wetlands.

Station 4

Station 4 began 330 m upstream of the confluence of the South Raisin River and was 46 m in length. The average channel width was 2.5 m and the average bankfull height 24 cm. The average wetted width and depth in the spring were 0.6 m and 5 cm, respectively. The station, including the beaver pond, was dry during the summer visit.

The substrate consisted entirely of fines and the morphology was a glide. The beaver dams present, just below station 4, created pool habitat in the spring. The station was choked with aquatic and terrestrial vegetation. The species providing the in-water cover throughout the station were reed canary grass, spotted joe-pye weed, broad-leaved cattail, goldenrod and reed canary grass. No signs of erosion were noted.

The tops of the banks were fully vegetated. The most common species were: goldenrod, reed canary grass, glossy buckthorn, American elm and ash. There was little to no canopy cover.

The beaver pond was sampled with four baited minnow traps on May 27, 2020. A total of 11 fish were captured representing 5 species: central mudminnow, northern redbelly dace, fathead minnow, creek chub, and brook stickleback (Table 3). No sampling took place during the summer as the station was dry (August 31, 2020).

Table 3: Summary of Fish Captured at Station 4

Species Name	Scientific Name	May 27, 2020 No. of fish (size range, mm)
Central Mudminnow	Umbra limi	6 (30-72)
Northern Redbelly Dace	Chrosomus eos	1 (62)
Fathead Minnow	Pimephales promelas	1 (48)
Creek Chub	Semotilus atromaculatus	2 (62-86)
Brook Stickleback	Culaea inconstans	1 (42)
	Total No. Species	5
	Total No. Individuals	11

Photo 8: Unnamed Drain 1a (May 11, 2020)

Photo 9: Station 4 looking upstream from the downstream end (August 31, 2020)

Station 5

Station 5 was located just downstream of the access road, beginning roughly 600 m upstream of the confluence of the South Raisin River. The station was 54 m in length. The average channel width was 3.1 m and the average bankfull height 22 cm. Apart from a few instances of pooling with the ruts, the site was dry during the summer. The smaller pool on the downstream end of the access road had 27 cm of water on May 28, 2020.

Additional information from the wetland channel upstream of this site (reach c) provided the following water level information recorded on May 28, 2020. The average wetted widths and depths were 0.8 m and 6 cm, respectively. The pool situated just upstream of the access road culvert had a maximum pool depth of 90 cm.

The substrate consisted mostly of fines with some gravel and cobble. The in-water cover throughout the station was provided by aquatic vegetation and terrestrial vegetation (narrow-leaved cattail, purple loosestrife, reed canary grass, sedges, sensitive fern and cardinal flower). Areas containing large and small woody debris, slash, was also present. No signs of erosion were noted but the channel was impacted by the ruts.

The tops of the banks were fully vegetated. The most common species were: reed canary grass, goldenrod, wild carrot, glossy buckthorn, common buckthorn, willow, American elm and ash. There was little to no canopy cover.

The pools on either side of the access road were sampled with baited minnow traps on May 27, 2020, and the natural channel in the wetland above was dip netted (also in May). The minnow traps (2) catch consisted of 17 fish were captured representing 4 species: 5 central mudminnow, 1 fathead minnow, 6 creek chub, and 5 brook stickleback. The dip netting (along a section of about 40 m) netted 9 fish representing 3 species: central mudminnow, a finescale dace, and 5 brook stickleback.

Species Name	Scientific Name	May 27, 2020 Pools by the Access Road No. of fish (size range, mm)	May 27, 2020 Station 5 No. of fish (size range, mm)
Central Mudminnow	Umbra limi	5 (55-75)	3 (44-55)
Finescale Dace	Chrosomus eos	n/a	1 (35)
Fathead Minnow	Pimephales promelas	1 (42)	n/a
Creek Chub	Semotilus atromaculatus	6 (38-136)	n/a
Brook Stickleback	Culaea inconstans	5 (29-50)	5 (30-43)
	Effort	2 Minnow Traps	Dip netting for a length of 40 m
	Total No. Species	4	3
	Total No. Individuals	17	9

Table 4: Summary of Catch from Station 5 (May 27, 2021)

Photo 10: Unnamed Drain 1c (May 11, 2020)

Photo 11: Unnamed Drain 1b (May 11, 2020)

Photo 12: Station 5 (in section 1b) looking upstream from the downstream end (August 31, 2020)

Unnamed Drain 2

While the background mapping suggests that there is an Unnamed Drain 2, no channel could be found within the wetland on site or at the upstream end. Review of the imagery suggests that the water from upstream may be blocked by the access road for the twin transmission lines. This follows with the detailed topography mapping created by others for the site. The culvert at the railroad is on a steep incline preventing fish access during all but perhaps the early spring. This feature does not provide fish habitat due to the lack of channel. It is anticipated that fish habitat is present immediately downstream of the CN Railroad culvert. Even if the culvert was repaired, there is no upstream channel for fish to access other than the ruts created by the quad trail. Since this quad trail runs east to west and as there are hills on either side, the habitat in the ruts is limited and, currently isolated. One central mudminnow was captured in the pooled water in the ruts next to this culvert.

Photo 13: Culvert Under Railroad at Headwater Feature 2 (May 27, 2020)

Unnamed Drain 3

Unnamed Drain 3 originates on the other side of Avonmore Road from what appears to be a small sand pit (about 720 m from the site). The total length of the feature is 1.8 km, and it flows into the South Raisin River, 1.1 km downstream of the railroad. The portion on-site is 0.4 km long and consisted of a channelized drain. The culvert under the railroad was well-positioned and did not represent a barrier to fish movement. The feature was seasonal.

Station 6

Station 6 was located 100 m west of where it crossed Avonmore Road and was 58 m in length. The average channel width was 3.7 m and the average bankfull height 27 cm. The average wetted width and depths in the spring were 3.2 m and 9 cm, respectively. The site was dry by summer.

The substrate consisted entirely of fines and the stream morphology was a glide. The in-water cover throughout the station was provided by aquatic and terrestrial vegetation (reed canary grass, sedges, purple loosestrife, spotted joe-pye weed, goldenrod species and cow vetch). The aquatic vegetation was hummocky within the station causing the channel to flow around the mounds. No signs of erosion were noted.

The tops of the banks were fully vegetated however, on the left bank the vegetation was recently cut creating an 8 m wide path running parallel along much of the station. The most common
species were: grasses, reed canary grass, goldenrod, cow vetch and slender willow. There was no canopy cover.

During the May 28, 2020, visit, the station was dip netted over an area of approximately 186 m². Three fish were captured representing 2 species: central mudminnow (size: 61 mm) and brook stickleback (size range: 38-40 mm). No sampling took place during the summer as the station was dry (August 31, 2020).

Photo 14: Unnamed Drain 3 (May 12, 2020)

Photo 15: Station 6 looking upstream from downstream (August 31, 2020)

Agricultural Drains

The last three features are dug agricultural drains that flow south into Unnamed Drain 3. None provided direct fish habitat, during the surveys and while the very early spring was missed, based on the habitats, it is unlikely that they provide direct habitat at any time of the year. Note Agricultural Drain 3 is not connected to the Unnamed Drain (blocked by soil – no defined channel) and is not direct fish habitat.

Agricultural Drain 1

Agricultural Drain 1 is on the west side and is 564 m long and well-connected to Unnamed Drain 3 on the downstream end. The channel was seasonal, and portions were already dry by May 12, 2020.

Station 7

Station 7 began 5 m upstream of the confluence of Unnamed Drain 3 and was 75 m in length. The average channel width was 3.6 m and the average bankfull height 27 cm. The average springtime wetted width and depths in the spring were 1.5 m and 10 cm, respectively. The site was dry by summer.

The substrate consisted entirely of fines and the stream morphology was a glide. The upstream half of the station was heavily choked with common reed and slender willow. The in-water cover throughout the station was provided by aquatic vegetation (common reed, sedges, reed

canary grass, spotted joe-pye weed, purple loosestrife and slender willow). The aquatic vegetation was hummocky within the station causing the channel to flow around the mounds. No signs of erosion were noted.

The tops of the banks were fully vegetated. The most common species were reed canary grass and slender willow. The shrubs covered the entire channel providing full shade.

During the May 28, 2020, visit, the entire length of the headwater feature (including Station 7) was dip netted. No fish were captured or observed. No sampling took place during the summer as the station was dry (August 31, 2020).

Photo 16: Agricultural Drain 1a, looking upstream from near mouth (May 20, 2020)

Photo 17: Agricultural Drain 1b, looking upstream (May 20, 2020)

Agricultural Drain 2

Agricultural Drain 2 is in the middle and is 567 m long and also well-connected to Unnamed Drain 3 on the downstream end. This one had a blockage roughly 180 m from the confluence with Unnamed Drain 3 that would be a temporary barrier to fish (until culvert is repaired), but again no fish were ever caught in this feature. This channel was seasonal, and portions were already dry by May 12, 2020.

Station 8

Station 8 began 5 m upstream of the confluence of Unnamed Drain 3 and was 60 m in length. The average channel width was 3.2 m and the average bankfull height 23 cm. The average springtime wetted width and depths in the spring were 1.5 m and 10 cm, respectively. The site was dry by summer.

The substrate consisted entirely of fines and the stream morphology was a glide. The upstream half of the station was heavily choked with common reed and slender willow. The in-water cover throughout the station was provided by aquatic vegetation (common reed, sedges, reed canary grass, spotted joe-pye weed, purple loosestrife and slender willow). The aquatic vegetation was hummocky within the station causing the channel to flow around the mounds.

The tops of the banks were fully vegetated. The most common species were: reed canary grass and slender willow. There was good canopy cover throughout.

During the May 28, 2020, visit, the entire length of the headwater feature (including Station 8) was dip netted. No fish were captured or observed. No sampling took place during the summer as the station was dry (August 31, 2020).

Photo 18: Agricultural Drain 2a, looking upstream from near mouth (May 20, 2020)

Photo 19: Station 8 (Agr 2a) looking upstream from downstream (August 31, 2020)

Photo 20: Agricultural Drain 2b, looking upstream (May 20, 2020)

Agricultural Drain 3

Agricultural Drain 3 was on the east side and was blocked at its downstream end. This short 142 m long drain was <u>not connected</u> to Unnamed Drain 3 and was seasonal.

Station 9

Station 9 began 5 m upstream of the confluence of Unnamed Drain 3 and was 58 m in length. The average channel width was 3.2 m and the average bankfull height 15 cm. The feature was dry during both the spring and summer visits.

The substrate consisted entirely of fines and the stream morphology was a glide. The station was heavily choked with common reed and slender willow. The in-water cover throughout the station was provided by aquatic vegetation (common reed, sedges, reed canary grass, purple loosestrife and slender willow). No signs of erosion were noted.

The surrounding area was vegetated on the west side and consisted of reed canary grass and slender willow. The east side was tilled. The dense willows provided full shade.

No sampling took place on either of the May 28 or August 31, 2020, visits as the station was dry.

Photo 21: Station 9 looking upstream from downstream (May 28, 2020)

3.5 Fish and Fish Habitat Discussion

There were eight features with the potential to provide fish habitat. Of these, four were confirmed to provide seasonal fish habitat: Unnamed Drain to Hoople Bay, South Raisin River, Unnamed Drain 1 and Unnamed Drain 3. Unnamed Drain 2 was not present on Site. It is suspected to begin downstream of the CN railroad. The Agricultural Drains 1 and 2 were indirect fish habitat and Agricultural Drain 3 was Not Fish habitat. The results from above are summarized in Table 5 below.

Table 5: Summary of Fish Habitat and Recommendations (including Headwater Assessment Recommendations)

Feature	Classification	Fish Species Caught	Comments
Unnamed Drain to Hoople	Seasonal Fish Habitat	Brook Stickleback	Moulinette Road ditch
South Raisin River	Seasonal Fish Habitat	Northern Redbelly Dace Brook Stickleback	Heavily impacted by clearing (even within some of the wetland)
Unnamed Drain 1	Seasonal Fish Habitat	Central Mudminnow, Northern Redbelly Dace, Fathead Minnow, Creek Chub, Brook Stickleback	Middle portion is heavily impacted by clearing

Feature	Classification	Fish Species Caught	Comments			
Unnamed Drain 2	On-Site - Not Fish Habitat	n/a (in quad trails – one Central Mudminnow)	There was no defined channel on Site and the culvert appears to be broken under the railroad track. The quad trail parallel to the track had ponded water but was isolated due to hills on either side.			
Unnamed Drain 3	Seasonal Fish Habitat	Central Mudminnow Brook Stickleback	No comments			
Agricultural Drain 1	Indirect Fish Habitat	None	Narrow, channel agricultural channel that is connected but offers little contributing flows			
Agricultural Drain 2	Indirect Fish Habitat	None	Narrow, channel agricultural channel that is connected but offers little contributing flows			
Agricultural Drain 3	Not Fish Habitat	None	Narrow, channel agricultural channel that is <u>NOT</u> connected			

4.0 SUMMARY OF WORKS, UNDERTAKINGS AND ACTIVITIES

As described in the introduction, Phase A is ready for a more detailed review. The site is within the settlement area of the Village of Long Sault and is zoned for Heavy Industrial Development. The developer will be applying for Site Plan Control approval in Fall, 2021. The general concept for the full site is under concept development and the proponent would like to work with DFO on both the Submission for Phase A and the Site in general. Phase A is the large inter-modal rail yard and will include full-length unit train tracks that are connected along 2 km of the existing CN Mainline (Kingston Subdivision). Clearing of vegetation and the cut and fill activities for Phase A (and possibly some of the rest of the Site) is anticipated to begin in the fall 2021.

General Concepts for Site:

- The watershed boundaries will be respected. No change to the amount of water flowing to the Lake St. Lawrence (Unnamed Tributary to Hoople) or to the Raisin River Watershed (all other channels on site).
- The water originating from the MTO culverts on Highway 401 needs to be accommodated.
- There will be no change in the amount of flow reaching each of the culverts under the railroad. This will ensure that the fish habitat downstream of the railroad is not impacted.
- Since there was no defined channel on Site for the Unnamed Drain 2, one option being considered is urbanizing this area and piping the flow to the railroad culvert.
- It is anticipated that the three Agricultural Drains will be removed but their contributing flow will continue to reach Unnamed Drain 3 (future submission).

Current submission:

- 1. The lower portions of the South Raisin (Watercourse F on the accompanying drawing) and of the Unnamed Tributary 1 (Watercourse E on the accompanying drawing) will be realigned into a single combined new channel. In the future, the upstream portion of these channels may also be realigned (Table 6).
- 2. Four culverts will be installed on this new combined channel (Table 7) (locations shown on accompanying drawing).

The next steps are summarized in Table 8 and the preliminary assessment of impacts to fish and fish habitat are discussed below, in Section 5.

	South Raisin I	River (Watercourse F)	Unnamed Drain 1 (Watercourse E)		
Existing	Length removed as part of Phase A = 593 m. Total length impacted is 800 m. Channel width 1.1 m	880 m ² (652 m ² in Phase A study area, see accompanying drawing)	Length 996 m and channel width 2.8 m	2789 m ²	
Proposed	Length 310 m, 1:2 year wetted width 3.3-5.7 m (note this length is only the portion in Phase A, see accompanying drawings)	Will form part of a future road ditch and may be designed to not be fish habitat. Note if this is designed not to be fish habitat, then it will impact the entire length of this watercourse.	Length 945 m, 1:2 year wetted width 3.3-5.7 m	5007 m ²	

Table 6: Summary of Changes to Channels Associated with Phase A

 Table 7: Summary of Proposed Culverts (see accompanying drawing for locations)

Culvert	Length (m)	Width (m)	Height (m)	Estimated Velocities (1:2 Year)	Max. Distance (50% White Sucker 380 mm) (SPOT)
Culvert 4 -Downstream (near CN)	51	12.2	0.5	1.0 m/s	26 m
Culvert 3	75	12.2	0.5	0.9 m/s	35 m
Culvert 2	35	12.2	0.5	1.0 m/s	26 m
Culvert 1 – Street A	32	12.2	0.5	0.8 m/s	50 m

Footuro	Classification	Fish Species	Commonte	Works, Activit	ies, Undertakings	Nevt Stens	
reature	Classification	Caught	Comments	Phase A	Future Phases	next steps	
Unnamed Drain to Hoople	Seasonal Fish Habitat (road ditch)	Brook Stickleback	Moulinette Road ditch	None	Unknown	TBD	
South Raisin River / Watercourse F	Seasonal Fish Habitat	Northern Redbelly Dace Brook Stickleback	Heavily impacted by clearing (even within some of the wetland)	Lower portion to become road ditch (not fish habitat) This will indirectly result in the loss of the upstream fish habitat.	Upper portion may be realigned to new single channel with Unnamed Drain 1/ Watercourse E	Discussion with DFO on loss of headwaters (see preliminary analysis below (Section 5))	
Unnamed Drain 1 / Watercourse E	Seasonal Fish Habitat	Central Mudminnow, Northern Redbelly Dace, Fathead Minnow, Creek Chub, Brook Stickleback	Middle portion is heavily impacted by clearing	Lower portion to be realigned into new channel with four new culverts. Calculated velocities at 1:2 levels are fast but it is anticipated that this would be short duration	Upper portion may be realigned to new single channel with South Raisin River /Watercourse F if culvert velocities do not negate this being habitat	Discussion with DFO on value of habitat and proposed realignments/culverts (see preliminary analysis below (Section 5))	
Unnamed Drain 2 / Watercourse D	On-Site - Not Fish Habitat	n/a (in quad trails – one Central Mudminnow)	There was no defined channel on-site and the culvert appears to be broken under the railroad track. The quad trail parallel to the track had ponded water	To be piped	n/a	Confirmation of assessment with DFO (see preliminary analysis below (Section 5))	

Table 8: Summary of Fish Habitat, and Timing of Works, Activities and Undertakings

Feature	Classification	Fish Species	Comments	Works, Activit	ies, Undertakings	Nevt Stens	
reature	Caught		Comments	Phase A	Future Phases	ivext Steps	
			but was isolated due to				
			hills on either side.				
Unnamed	Seesonal Fish	Central				Overall concept plan to be	
Drain 3	Habitat	Mudminnow	No comments	None	TBD	discussed with DEO	
Diam 5	Hauttat	Brook Stickleback				discussed with DPO	
			Narrow, channel				
Agricultural	Indirect Fish Habitat		agricultural channel			Overall concept plan to be	
Agricultural		Hullect Fish	None	that is connected but	None	TBD	discussed with DEO
Drain 1			offers little contributing			discussed with DPO	
			flows				
			Narrow, channel				
Agricultural	Indiract Fish		agricultural channel			Overall concept plan to be	
Agricultural		None	that is connected but	None	TBD	diamaged with DEO	
Drain 2	парна		offers little contributing			discussed with DFO	
			flows				
A ami au ltumal			Narrow, channel			Overall concert alon to be	
Agricultural	Not Fish Habitat	None	agricultural channel	None	TBD	discussed with DFO	
Drain 5			that is NOT connected				

5.0 EVALUATION AND ASSESSMENT OF PHASE A

As mentioned above this is a large site and the proponent is moving forward with Phase A. However, the decisions made in Phase A along with those during the concept planning for the remainder of the site will impact how fish and fish habitat are dealt with. As such, a preliminary assessment of the impacts associated with Phase A are included below. The details (i.e. footprints, rip rap, culvert details) will move forward once DFO has provided input on the general concept.

5.1 Preliminary Impact Assessment Methods

The assessment of the potential impacts of the realignment of the lower portions of two watercourses and the installation of the four culverts is completed by analyzing the impact of various activities associated with the project.

- Clearing of terrestrial vegetation
 - a. The Site is mostly disturbed and impacted with slash and ruts but has been regenerating. Where treed, the tree heights are 1-3 m. The entire site will likely be cleared and cut and filled for development.
- Installation of cofferdams. Details to be determined but the existing channels are narrow and dry in the summer.
- Dewatering of the work area.
- Bypass flow to maintain the upstream and downstream conditions during construction (if needed).
- Excavation and dredging for construction of new channel and installation of culverts would be completed first followed by the decommissioning of the old alignments.
- Backfilling and stabilization of banks.
- Removal of cofferdams.

The significance of the potential impacts is measured using four criteria:

- 1. Area affected may be:
 - a. local in extent signifying that the impacts will be localized within the project area
 - b. regional signifying that the impacts may extend beyond the immediate project area.
- 2. Nature of Impact:
 - a. negative or positive

- b. direct or indirect
- 3. Duration of the impact may be rated as:
 - a. short term (construction phase; one in-water timing window)
 - b. medium term (up to 4 years)
 - c. long term (>4 years).
 - d. permanent
- 4. Magnitude of the impact may be:
 - a. negligible signifying that the impact is not noticeable
 - b. minor signifying that the project's impacts are perceivable and require mitigation
 - c. moderate signifying that the project's impacts are perceivable and require mitigation as well as monitoring and/or compensation
 - d. major signifying that the project's impacts would destroy the environmental component within the project area.

5.2 Phase A - Evaluation of Potential Impacts and Mitigation to Fish and Fish Habitat

5.2.1 Fish and Fish Habitat Discussion

The Fisheries Act (FA) (August 28, 2019) prohibits:

- Death of Fish (Section 34.4)
- Harmful alteration, disruption, or destruction of Fish Habitat (Section 35)
- Ministerial powers to ensure the free passage of fish or the protection of fish or fish habitat with respect to existing obstructions (Section 34.3)

Under the updated FA there remain a certain type of waterbodies where DFO review is not required. Generally, these are for projects that will occur on a waterbody that is not connected to fish habitat and does not contain fish at any time of year. It also includes specific activities for which guidelines have been prepared by DFO and if these can be met then no review is required. The guidelines consist of Standard Code of Practice or Mitigation Measures for the Protection of Fish and Fish Habitat. Realignments and the installation of new culverts on fish bearing watercourses does not meet the exemptions and must be reviewed by DFO.

5.2.2 Factors to be Considered

The *Fisheries Act* indicated that the following factors are to be considered during the review:

1. Contribution to the productivity of relevant fisheries by the fish or fish habitat that is likely to be affected;

- 2. Fisheries management objectives;
- 3. Whether there are measures and standards to avoid, mitigate or offset depth or HADD of fish habitat.

Contribution to the productivity of relevant fisheries by the fish or fish habitat that is likely to be affected

The existing channels have been impacted by the clearing of the site by others as well as a lack of maintenance on the existing culverts along the primary access trail (north/upstream of Phase A). While the collection of fish from the pools upstream of this primary access trail indicates that fish were able to find their way through the system (system is seasonal with no overwintering habitat), the existing fish passage through the site is not ideal. Currently, the site provides seasonal habitat for common warm to cool water fish and would contribute forage fish to downstream fish habitat.

Fisheries Objectives

There are no stated fisheries management objectives for this system. While sport and pan fish are noted for the South Raisin much further downstream, none were captured downstream by Bowfin during sampling for an unrelated project in the spring of 2018. That work took place downstream of the railroad in an area not impacted by clearing. Eight species were found (Central Mudminnow, White Sucker, Finescale/Northern Redbelly Dace, Brassy Minnow, Fathead Minnow, Creek Chub, Brook Stickleback and Johnny Darter).

Whether there are measures and standards to avoid, mitigate or offset death of fish or HADD of Fish Habitat

Avoidance

The site is also constrained by several existing elements:

- The industrial and logistics village will be built around the railway yard and inter-modal staging area. The grading of the rail yard and storage and transfer area have a very low tolerance and must be kept at approximately less than <0.5-1% grade change.
- The existing grade of the CN tracks must be maintained at less than a 1% change, including a switch that must match existing at the eastern and western end of the side-track lines.
- The CN engineering standards dictate the cover that the rail lines must maintain over culvert crossings, which further constrains the grading design.
- The existing culverts crossing the CN mainline to the south
- The alignment and grade of the natural watercourses and drainage ditches through the site (including a wetland area that the developer is working on maintaining as a naturalized area)

- The existing culvert's crossing Highway 401 on the north side of the site
- There is an at-grade crossing at Avonmore Rd., which must match exactly with existing rail lines and road grades.

Effort was made to improve the potential for fish passage through the proposed new culverts, the velocities remain higher than preferred for the lengths. Because of the constraints listed above, it is unlikely that a solution can be found for these culverts for water volumes estimated for the 1: 2 year.

Mitigation

To explore how best to mitigate the impacts, further understanding of the potential impacts provided through a summary of the work categories and pathways of effect is provided.

Work Categories

- Aquatic Vegetation Removal
- Culverts
- Dewatering/pumping
- Dredging/Excavation
- Riparian vegetation removal
- Shoreline protection
- Temporary structures
- Watercourse realignment

Pathways of Effects

The proposed project has the potential to trigger the following Pathways of Effects (PoE):

- Removal of aquatic vegetation
 - The existing channels have been impacted by clearing activities (by others)
 - The removal of aquatic vegetation will be restricted to the channel to be decommissioned and only once the new channel is commissioned. There may be minor removal of vegetation at the tie-ins.
 - Some aquatic vegetation will be removed by machinery.
 - Work will be completed in an isolated section to prevent suspended sediments from travelling outside of the work area.
 - Fish will be salvaged.

- Use of industrial equipment
 - Potential impacts with erosion and sediment issues will be mitigated (see mitigation measures below)
 - Potential impacts with accidents and malfunctions will be mitigated (see mitigation measures below)
- Vegetation clearing (terrestrial)
 - The new channel will have a buffer of at least 15 m on either side.
 - There will be no use of herbicides
 - Potential impacts with erosion and sediment issues will be mitigated (see mitigation measures below)
- Placement of material or structures in water (Temporary cofferdams to isolate work area. Permanent rip rap)
 - Cofferdams would be installed during in-water timing window and would block off the entire channel .
 - Either the existing channel would be left in place, or a flow bypass will be included around the work area. This will be sufficient to maintain upstream and downstream water levels at the time of construction. It will be released in such a way as to prevent erosion or the transportation of suspended sediments downstream. DFO's end of pipe standard code of practice will be followed for the intake.
 - It is anticipated that erosion control in the form of rip rap will be required at the culverts. The rip rap is to be installed in a manner that does not prevent fish passage. Rip rap will provide substrate for benthic invertebrates and fish cover. It is to be free of fines. The footprint of the rip rap is not currently known.
- Change in timing, duration, and frequency of flow (Temporary cofferdams)
 - This watercourse was dry during the summer as such a flow bypass will be required if works are completed prior to the channel drying out (naturally) that construction season. See above.
 - A fish salvage will take place within the isolated area.
 - The duration of the temporary works is short (one construction season)
- Fish passage (Temporary: prevented by cofferdams; Permanent: new culverts).
 - Work will take place during normal in-water period.
 - At this time, the downstream culverts proposed would restrict fish passage based on their lengths and the estimated velocities at a 1:2 year flow. It is anticipated, that the velocities will not be a barrier at lower flows. It was noted that there was

not a large volume of water my mid-May 2020. As such, fish would have access to the upstream habitat during certain times of the year. The design is still being reviewed and will be discussed with DFO.

- Excavation (for new channels)
 - The excavation works are associated with the construction of the new channel alignments.
 - Potential impacts due to the exposure of soils along the banks will be mitigated by stabilizing the banks prior to commissioning the new channels (<20% bare soil).
- Dredging (at tie-ins of the new channel)
 - Minor dredging will be required at the tie-ins of the new alignments to the existing. The dredging will ensure that the final channel bed and culvert inclines match downstream and upstream elevations.
 - Work will take place in isolation to minimize suspension of sediments.
 - During summer water levels, the channels were dry.
 - Potential impacts due to erosion and sediment concerns will be mitigated.
- Grading
 - Potential impacts due to the exposure of soils and bank stability will be mitigated through isolated work areas, erosion and sediment control measures and stabilizing banks once completed and prior to commissioning.

These works and activities have the potential to cause impacts to fish or fish habitat through:

- Increased erosion potential of slopes.
- Sedimentation and/or suspension of fines within watercourse.
- Change in food supply.
- Change in in-water habitat because of the introduction of rip rap within the high-water mark.
- Changes in timing duration, or frequency of flow because of construction of cofferdams during in-water period.
- In-stream structure (culverts, rip rap and temporary isolation of work area) affecting fish movement.
- Displacement or stranding of fish during isolation for construction.
- Contamination of water (i.e. accidents or malfunctions of equipment in or near water, impacts to water quality from turbidity).
- Impacts to fish passage during 1:2 year levels (baseflows not available at this time).

Based on the characteristics of the channel and the proposed work activities this proposal could result in negative direct or indirect impacts to a local area. These would be short term (temporary work area during construction), medium term (rip rap) and permanent (impacts to fish passage). Without mitigation, these impacts would be moderate to major.

Preliminary Mitigation Measures

Planning

- Follow the DFO guidelines in their Standard Code of Practice for temporary cofferdams and end-of-pipe.
- Construct and stabilize the new channels prior to the decommissioning of the existing channels.
- Site instruction will be provided to contractor to highlight that the channel provides fish habitat.
- Clearly demarcate work areas within the riparian habitat in the field.
- All in-water works to occur during the in-water work window (July 1 to March 14, inclusive).
- Erosion and sediment control measures will be installed prior to the clearing of vegetation within 30 m of a watercourse.
- No in-water work will begin until the area has been isolated with measures deemed appropriate by the contract administrator or proponent. These measures must also be sufficient to allow for dewatering and a fish salvage (see below) and to prevent fish from entering the work area.
- The work in the channel is to be completed in the dry.
- Suspend activities that cause muddy environments during periods of heavy rains.
- Minimize clearing of woody vegetation (few woody individuals are present). Where possible, cut the shrubs down (instead of grubbing).
- All or portions of the riparian corridor will be naturalized with native vegetation.

Erosion and Sediment Control

- An erosion and sediment control plan will be developed by contractor and implemented prior to any work within 30 m of the watercourse.
 - Provide regular maintenance to the erosion and sediment control measures during construction. Contractor shall be responsible for ensuring that the erosion and sediment control measures are maintained and will monitor the water clarity downstream of the work site throughout the day and during rain events. Water quality is to meet the *Canadian Water Quality Guidelines for the Protection of Aquatic Life*. Monitoring for visible plumes outside of the work area is to be undertaken.

- At a minimum, the erosion and sediment control plan will include the installation of sediment fencing along the top of banks where vegetation clearing and/or soil disturbance will occur within 30 m of any channel prior to the removal of vegetation. And the installation of a turbidity curtain downstream.
- Additional materials (*i.e.* rip rap, filter cloth and silt fencing) will be readily available in case they are needed promptly for erosion and/or sediment control.
- Construction of cofferdam dams can create a plume. As such, appropriate measures should be put in place such as placing rock for the cofferdam within a turbidity curtain that isolates just the area where the cofferdam is being built.
- Note that the meter bags can often split when being removed as such it is preferred that gravel be used for metre bags.
- Any stockpiles of soil or fill material will be stored as far as possible from the channel and protected by silt fencing (minimum 30 m).
- The erosion control measures will not be removed until the bank is stabilized (<20% bare soil).
- All equipment working within 30 m of the water will be well maintained, clean and free of leaks.
- The work within the channels will be completed in the dry.
- Water from dewatering will be treated prior to returning it to the system (i.e. straw bale settling ponds covered by geotextiles or sediment sock on the end of hose and situated on top of well vegetated slopes).
- Water from bypass will be released in such a way as to prevent erosion or the transportation of suspended sediments downstream. Note that if this water is taken from upstream of the work area and is the same quality as the receiving waterbody on the downstream side, then it can be released directly into the system (see additional notes under fish and fish habitat protection)
- Where banks/riparian area (area within 30 m of channel) have been stabilized by seeding and/or planting, monitor the revegetation to ensure that the vegetation becomes fully established.
- Any riprap will consist of clean rock free of fines.

Fish and Fish Habitat Protection

- All material introduced for the temporary measures will be fully removed from the water at the completion of the work.
- The methods, sequencing and cofferdam design need to be determined once the project proceeds further in design.
- Fish (and other aquatic fauna) will be salvaged from the isolated channel by a qualified biologist/technologist. The salvage will need to be repeated if the work area becomes flooded.

- Dewatering of water in areas that may contain fish will be completed from hoses placed in fish baskets or covered with clean wash rock or other such method to prevent fish impingement and entrainment. Note that the screens that come on the hoses are not enough to prevent fish from harm.
- Monitor the end of pump frequently for ensure that all fish protection measures are functioning.
- Minimize the size of temporary in-water work areas.
- Bypass flow will be required. The amount of flow bypass should be sufficient to maintain the habitats upstream and downstream of the site (i.e. similar to what would be passed through the culvert). The DFO Standard Code of Practice for End-of-Pipe should be followed to ensure that fish do not become impinged or entrained.
- Installation of rock protection will not impede fish from passing through culverts.

Contaminant and Spill Management

- All equipment working in or near the water should be well maintained, clean and free of leaks. Maintenance on construction equipment such as refueling, oil changes or lubrication would only be permitted in designated area located at a minimum of 30 m from the shoreline in an area where sediment erosion control measures and all precautions have been made to prevent oil, grease, antifreeze or other materials from inadvertently entering the ground or the surface water flow.
- Emergency spill kits will be located on site. The crew will be fully trained on the use of clean-up materials to minimize impacts of any accidental spills. The area would be monitored for leakage and in the unlikely event of a minor spillage the project manager would halt the activity and corrective measures would be implemented.
- If a spill occurs:
 - Stop all work
 - Spills are to be immediately reported to the MOECC Spills Action Centre (1800 268-6060). Note that under the *Fisheries Act* deleterious substance includes sediments.
 - Clean-up measures are to be appropriate and are not to result in further harm to fish/fish habitat.
 - Sediment-laden water will be removed and disposed of appropriately.
- No construction debris will be allowed to enter the watercourse.
- Following the completion of construction, all construction materials will be removed from site.

Residual/Net Impact

The proposed works and design have not been finalized. At this time, the proponent would like to initiate discussions with DFO for the overall Site and then for the Phase A. It is acknowledged, that the current culvert designs may pose an issue for fish passage during 1:2 flows.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Michelle Lavictoire, Biologist

6.0 **REFERENCES**

- Coker, G.A., Portt, C.B., & Minns, C.K. (2001). Morphological and Ecological Characteristics of Canadian Freshwater Fishes. *Canadian Manuscript Report of Fisheries and Aquatic Sciences* 2554. 89pp.
- Eakins, R.J. (2018). Ontario Freshwater fishes life history database. Retrieved September 26, 2018 from: <u>http://www.ontariofishes.ca</u>
- iNaturalist. (2019). iNaturalist Research-grade Observations. Occurrence dataset. Accessed online June 7, 2019 from: www.inaturalist.org.
- Mandrak, N.E., and Bouvier, L.D. 2014. Standardized data collection methods in support of a classification protocol for the designation of watercourses as municipal drains. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/077. v + 26 p.
- MTO (2006). Environmental Guide for Fish and Fish Habitat, Section 5: Sensitivity of Fish and Fish Habitat. Ministry of Transportation Ontario.

Ontario Ministry of Natural Resources. (2014). Land Information Ontario.

- Page, L.M, Espinosa-Pérez, H., Findley, L.T., Gilbert, C.R., Lea, R.N., Mandrak, N.E., Mayden, R.L., & Nelson, J.S. (2013). Common and Scientific Names of Fishes from the United States, Canada, and Mexico, 7th edition. American Fisheries Society. Special Publications 34.
- Scott W.B. & Crossman E.J. (1973) *Freshwater Fishes of Canada*. Bulletin 184. Fisheries Research Board of Canada, Ottawa.
- Stanfield, L. (editor). (2013). *Ontario Stream Assessment Protocol*. Version 9.0. Fisheries Policy Section. Ontario Ministry of Natural Resources. Peterborough, Ontario. 505 pp.

Appendix A: DFO SAR Mapping (NASAR)

Appendix B: Summary of Realignment Information (from Crozier Consulting Engineers)

Please see below for the preliminary cross section length, width, and areas for the proposed Watercourse E alignment. The stations included in the table below correspond with the Watercourse E alignment shown in the figure circulated on Wednesday. Please note that the information shown below is preliminary and is subject to change during the detailed channel design process in the future.

Cross Section Geometry	Start Station	End Station	Length (m)	Wetted Width (m)	Area (m ²)
3:1	0+000	0+045	45	3.3	148.5
1:10	0+045	0+090	45	4.65	209.3
3:1	0+090	0+110	20	3.3	66.0
1:10	0+110	0+130	20	4.65	93.0
3:1	0+130	0+150	20	3.3	66.0
1:10	0+150	0+210	60	4.65	279.0
3:1	0+210	0+245	35	3.3	115.5
1:10	0+245	0+290	45	4.65	209.3
3:1	0+290	0+350.68	60.68	3.3	200.2
Culvert #1	0+350.68	0+382.79	32.11	12.2	391.7
3:1	0+382.79	0+415	32.21	3.84	123.7
1:10	0+415	0+420	5	5.62	28.1
3:1	0+420	0+460	40	3.84	153.6
1:10	0+460	0+490	30	5.62	168.6
3:1	0+490	0+555	65	3.84	249.6
1:10	0+555	0+580	25	5.62	140.5
3:1	0+580	0+625	45	3.84	172.8
1:10	0+625	0+670	45	5.62	252.9
3:1	0+670	0+780	110	3.84	422.4
1:10	0+780	0+788.68	8.68	5.62	48.8
Culvert #2	0+788.68	0+811.49	22.81	12.2	278.3
3:1	0+811.49	0+827.94	16.45	3.84	63.2
Culvert #3	0+827.94	0+878.05	50.11	12.2	611.3
3:1	0+878.05	0+891.5	13.45	3.84	51.6
Culvert #4	0+891.5	0+922.81	31.31	12.2	382.0
3:1	0+922.81	0+944	21.19	3.84	81.4

Ainley Group 1-50 Grant Timmins Drive Kingston, Ontario K7M 8N2

Log of Test Pit: TP7

Project No.: 21501-1 Project: Proposed Rail Yard Client: Willis Kerr Contracting Ltd. Location: Long Sault, ON

Ground Elevation (masl): 50.6 Water Elevation (masl): NA Depth to Water (m): NA

	SI	JBSURFACE PROFILE	SAM	PLE		
Depth	Elevation	Description	Number	Type	Groundwater	Symbol Log
ft m	0.00	Ground Surface				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0 - 0 - 0 2 0 2 8 2 8 2 8 2 10 2 12 4 14 4 14 4 14	0.35 0.80 3.50	Topsoil Silty sand some clay and rootlets, dark brown. Silty Sand Silty sand some clay, trace of gravel, loose, brown. Till Silty sand some gravel, clay, cobbles and boulders, compact becoming very dense, brown. End of Test Pit at 3.5 m below existing site grades. Note: Groundwater infiltration was not encountered during the test pit excavation.				
Exca	vated B	y: Willis Kerr Contracting Ltd.		Proje	ect Eng	gineer: Bill Mclatchie, P.Eng

Excavated By: Willis Kerr Contracting Ltd.

Excavation Method: 324E Excavator

Excavation Date: January 6-7, 2021

Project Technician: Josh Charlton, C.Tech

Sheet: 1 of 1

SOIL PROFILE AND TEST DATA

FILE NO.

PG5376

Preliminary Geotechnical Investigation Prop. Commercial Development, County Road 15 Long Sault, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

REMARKS									HOLE NO	
BORINGS BY Excavator				D	ATE A	August 5,	2020	1	TP 7	
SOIL DESCRIPTION	РІОТ		SAN	IPLE			ELEV.	Pen. R • 5	esist. Blows/0.3m 0 mm Dia. Cone	en Su
	ATA	PE	BER	% VERY	ALUE ROD	(11)	(11)		Notor Contont %	omete structio
GROUND SUBFACE	STR	Τζ	MUN	SECO SE	N VI					Piezo Cons
						0-	-75.70			ШU
TOPSOIL		G	1							
		_ G	2							
Stiff, brown SILTY CLAY, trace sand						1-	-74.70			
firm and arou by 1.2m donth		-								
- Inni and grey by 1.5m depth		- G	3							
						2-	-73.70			
2.60										
2										
		G	4			3-	-72 70			☑
		_				5	12.70			-
sand, gravel, cobbles and boulders										
						4-	-71.70			
		-	_							
<u>5.00</u>		G	5			5-	-70.70			
(Groundwater infiltration at 3.0m depth)										
								20	40 60 80 10	00
								Shea	ar Strength (kPa) turbed △ Remoulded	

SOIL PROFILE AND TEST DATA

40

20

▲ Undisturbed

60

Shear Strength (kPa)

80

△ Remoulded

100

Preliminary Geotechnical Investigation Prop. Commercial Development, County Road 15 Long Sault, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DA

DATUM Geodetic						1				FILE NO	PG5376	
REMARKS										HOLE N	^{0.} TP17	
BORINGS BY Excavator		LOT		SAN	D APLE	ATE	DEPTH	ELEV.	Pen. Re	esist. B	lows/0.3m	
SOIL DESCRIPTION		ATA P	ЭŪ	BER	VERY	LUE ROD	(m)	(m)			a. Cone	meter
GROUND SURFACE		STR	IXT	IMUN	RECOV	N VA or 1			0 W 20	ater Co 40	ntent % 60 80	Piezo Const
TOPSOIL	0.40		G	1			- 0-	-85.23				
GLACIAL TILL: Brown silty sand, trace clay, gravel, cobbles and boulders			G	2			1-	-84.23				
			_ G	3			3-	-82.23				
End of Test Pit	3.60	^^^^										
Practical refusal to excavation at 3.60m depth												
(TP dry upon completion)												

SOIL PROFILE AND TEST DATA

Preliminary Geotechnical Investigation Prop. Commercial Development, County Road 15 Long Sault, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

DATUM

BORINGS BY	Excavator
------------	-----------

Geodetic

FILE NO. PG5376	
HOLE NO. TP19	
oiot Plowa/0.2m	

BORINGS BY Excavator	_			D	ATE	August 7,	2020		IP	19
SOIL DESCRIPTION	PLOT		SAN		1	DEPTH	ELEV.	Pen. Re ● 50	sist. Blows/0 mm Dia. Cor	.3m ie _გ ნ
	RATA	ХРЕ	MBER	% OVERY	ALUE ROD	(11)	(11)	• Wa	ater Content '	comete
GROUND SURFACE	ST	H	N N	REC	N OF			20	40 60	Con
TOPSOIL		G	1			- 0-	-79.81			· · · · · · · · · · · · ·
		G	2			1-	-78.81			
		~				2-	-77.81			
GLACIAL TILL: Brown silty sand, trace gravel, cobbles and boulders		G	3			3-	-76.81			
		~				4-	-75.81			
End of Test Pit (TP dry upon completion)		~ ~ ~ ~				5-	-74.81			
								20 Shear ▲ Undistu	40 60 r Strength (kF rbed △ Remo	80 100 Pa) builded

SOIL PROFILE AND TEST DATA

FILE NO.

Preliminary Geotechnical Investigation Prop. Commercial Development, County Road 15 Long Sault, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

										PG5376	
HOLE NO. TP23											
BORINGS BY Excavator				D	ATE /	August 7,	2020			IFZJ	
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.	Pen. Ro • 5	esist. Blo 0 mm Dia	ows/0.3m a. Cone	r n
	LATA	(PE	IBER	°° NERY	ALUE RQD	(11)	(11)		later Cor	ntent %	omete structio
GROUND SURFACE	STI	Τ	NUN	RECO	и И И			20	40 F		Piez Cons
		_				0-	-83.39				
TOPSOIL		G	1								
GLACIAL TILL: Brown silty sand, trace gravel, cobbles and boulders		 G	2			1-	-82.39				
2 10						2-	-81.39				
3.10 End of Test Pit											
Practical refusal to excavation at 3.10m depth.											
(TP dry upon completion)								20 Shea ▲ Undist	40 € ar Streng urbed △	60 80 10 th (kPa) Remoulded	00

Development Standards						
i.) Development on private services						
	Required	Provided				
Lot Area (minimum)	1 ha (2.5 aœes)	271.6 ha				
Lot Frontage (minimum)	60 m (196.85 ft.)	(Cty 15) 824 m (Cty 35) 523 m (401) 2,100 m				
Yard Requirements (minimum)						
rðnt	12 m (39.37 ft.)	378 m				
Rear	12 m (39.37 ft.)	2656 m				
Exterior Side	12 m (39.37 ft.)	1625 m				
Interior Side	7.5 m (24.61 ft.)	10.9 m				
Building Height (maximum)	30 m (98.43 ft.)	8.8 m (mean)				
Accessory Building	12 m (39.37 ft.)	0				
Lot Coverage (maximum)	20%	<0.5%				
Parking Requirements (spaces)	1 per 80 s.m. GFA (11 Spaces)	27 Spaces (1 BF Incl.)				
Parking Space Dimensions: 6.1 m (L) x 3.7 Parking Aisle Width: 9.2 m (W)	1 m (W)					

|--|

Contractor shall check and verify all dimensions on site and report any discrepancies to the Ar chitect before proceeding.

GENERAL SITE PLAN NOTES :

1. Exterior site lighting shall be directed onto the site

NØ.	revision	date
north	nord	
F	Re:	Re: PUBLICURBANISM PHONE 514.503.2614 EMAIL hicks@republicurbanism.com
detail no. sheet no.		1 détail no. A1 feuille no.
project projet	LONG S	SAUL TRAILYARDS SITEPLAN
designed by		LONG SAUL T, ON
conçu par	ML	project no.
dessine par	МВ	no. du projet
dan win n /	2021/09/20	as noted
arawing /	aessin	SITE PLAN

GROUND FLOOR

Contractor shall check and verify all dimensions on site and report any discrepancies to the Architect before proceeding.

GENERAL SITE PLAN NOTES:

-	date		revision	NO.
			nord	north
nism.con	URBANISM 514.503.2614 hicks@republicurbar	Re:PUBLIC U PHONE 5 E MAIL F	Re:	R
	détail no. feuille no.	2		detail no . sheet no .
,				
,	AILYARDS SITE P LAN	AULT R A S	LONG S	project projet
	AILYARDS SITE P LAN	AULT R A S	LONG S	project projet
	AILYARDS SITE P LAN	AULTRA S LON	LONG S KJ (CREWS)	project projet designed by conçu par
	AILYARDS SITE P LAN	AULTRA S LON approved by approuvé par	LONG S KJ (CREWS) KJ (CREWS)	project projet designed by conçu par drawn by dessiné par
	AILYARDS SITE P LAN IG SAULT, O N PH as noted	AULTRA S LON approved by approuvé par project no. no. du projet scale	LONG S KJ (CREWS) KJ (CREWS) 2021/10/26	project projet designed by conçu par drawn by dessiné par date
	AILYARDS SITE P LAN IG SAULT, O N PH as noted	AULT RA S LON approved by approuvé par project no. no. du projet scale	LONG S KJ (CREWS) 2021/10/26 ssin	project projet designed by conçu par drawn by dessiné par date drawing / de

APPENDIX B

Water Demand Calculations

B1 – Fire Protection Communication
B2 – Water Demand Calculations
B3 – Ontario Building Code: Fire Flow

Sehrish Ahmad

From:	Nick Giroux <nick.giroux@crewsrail.com></nick.giroux@crewsrail.com>
Sent:	October 19, 2021 3:43 PM
То:	Sehrish Ahmad; Kyle Jones
Cc:	Katherine Rentsch; Jennifer Murray
Subject:	RE: Long Sault Phase A - Fire Protection Requirements (1909-5629)
Follow Up Flag:	Follow up
Flag Status:	Completed

Good afternoon Sehrish,

Approximate SF of the shop building is 9600 ft² (building footprint). The floor plan is currently under internal review; we will forward as soon as it is finalized. As for OBC classification, the shop building at our Johnstown site falls under Group F, Division 2 (Medium-hazard industrial occupancy). Occupancy type should be the same for the shop building at the Long Sault site.

Regards,

Nick Giroux

Operations/Logistics Support T: (613) 258-6919 Ext. 114 C: (613) 298-0143 Email: <u>nick.giroux@crewsrail.com</u>

From: Sehrish Ahmad <sahmad@cfcrozier.ca>
Sent: October 19, 2021 9:17 AM
To: Kyle Jones <Kyle.Jones@crewsrail.com>; Nick Giroux <Nick.Giroux@crewsrail.com>
Cc: Katherine Rentsch <krentsch@cfcrozier.ca>; Jennifer Murray <jmurray@ave31.com>
Subject: RE: Long Sault Phase A - Fire Protection Requirements (1909-5629)

Good Morning Kyle and Nick,

I'm emailing to follow up this email chain regarding fire protection requirements. As requested previously, please share further details on the shop building (i.e. building classification, and square footage).

Thank you,

Sehrish

Sehrish Ahmad | Engineering Intern 2800 High Point Drive, Suite 100 | Milton, ON L9T 6P4 T: 905.875.0026

Crozier Connections: f 🌌 in

Read our latest news and announcements here.

From: Jennifer Murray <<u>jmurray@ave31.com</u>>
Sent: October 13, 2021 11:12 AM
To: Kyle Jones <<u>Kyle.Jones@crewsrail.com</u>>; Nick Giroux <<u>Nick.Giroux@crewsrail.com</u>>
Cc: Sehrish Ahmad <<u>sahmad@cfcrozier.ca</u>>
Subject: FW: Long Sault Phase A - Fire Protection Requirements (1909-5629)

Kyle / Nick,

See below from the Township. Please forward any detailed information about the SF of the building, etc. so we can confirm fire requirements.

We can start with a 'draft' building design to start and we can update as we go through Site Plan Approval to be the actual building design.

Jennifer Murray, P. Eng, MBA

Vice President, Land Development Vice-présidente, Développment de terrains

Avenue 31 Capital Inc.

801-250 City Centre Ottawa, ON K1R 6K7

E jmurray@ave31.com C 613-799-2422

From: Karl Doyle <<u>karl@southstormont.ca</u>>
Sent: October 13, 2021 10:43 AM
To: Sehrish Ahmad <<u>sahmad@cfcrozier.ca</u>>; Ross Gellately <<u>ross@southstormont.ca</u>>; Hilton Cryderman
<<u>hilton@southstormont.ca</u>>
Cc: Brendan Walton <<u>bwalton@cfcrozier.ca</u>>; Katherine Rentsch <<u>krentsch@cfcrozier.ca</u>>; Jennifer Murray
<<u>jmurray@ave31.com</u>>
Subject: RE: Long Sault Phase A - Fire Protection Requirements (1909-5629)

Hi Sehrish,
Did you provide design specifics of the proposed build so we can evaluate?

Regards,

Karl Doyle

Director of Planning/Building

Come see for yourself!

Township of South Stormont 2 Mille Roches Rd., P.O. Box 84 Long Sault, ON KOC 1P0 Email: <u>karl@southstormont.ca</u> Office: 613-534-8889 ext. 217 Fax: 613-534-2280

Like Us On Facebook

This e-mail originates from the Township of South Stormont e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

From: Sehrish Ahmad <<u>sahmad@cfcrozier.ca</u>>
Sent: October 13, 2021 10:31 AM
To: Ross Gellately <<u>ross@southstormont.ca</u>>
Cc: Karl Doyle <<u>karl@southstormont.ca</u>>; Brendan Walton <<u>bwalton@cfcrozier.ca</u>>; Katherine Rentsch
<<u>krentsch@cfcrozier.ca</u>>; Jennifer Murray <<u>imurray@ave31.com</u>>
Subject: RE: Long Sault Phase A - Fire Protection Requirements (1909-5629)

Good Morning Ross and Karl,

I hope you are both doing well and enjoyed the long weekend! I am emailing to follow up on my previous request regarding fire suppression requirements for the shop building which is proposed as part of the Phase A works for the railyard.

We are considering a typical fire cistern complete with a stand pipe to provide fire protection for the proposed shop building. The fire cistern would be sized based on the *Office of the Fire Marshal Fire Protection Water Supply Guideline for Part 3 in the Ontario Building Code*. The proposed building will be a pre-fabricated steel building and will be used for office space and equipment storage.

Please advise whether this will be acceptable for fire flow suppression for the shop building.

Let me know if you need anything else from us.

Kind Regards,

Sehrish

Sehrish Ahmad | Engineering Intern 2800 High Point Drive, Suite 100 | Milton, ON L9T 6P4 T: 905.875.0026

Crozier Connections: f 🅑 in

Read our latest news and announcements here.

From: Sehrish Ahmad
Sent: October 7, 2021 1:52 PM
To: Ross Gellately <<u>ross@southstormont.ca</u>>
Cc: Karl Doyle <<u>karl@southstormont.ca</u>>; Brendan Walton <<u>bwalton@cfcrozier.ca</u>>; Katherine Rentsch
<<u>krentsch@cfcrozier.ca</u>>; Jennifer Murray <<u>imurray@ave31.com</u>>
Subject: Long Sault Phase A - Fire Protection Requirements (1909-5629)

Good Afternoon Ross,

We are working on Phase A of the Long Sault Logistics Village and are reviewing the fire suppression requirements ahead of the Site Plan submission. We require some input from the Township as Phase A will be complete with a small shop building which will be used for office space and equipment storage. Kindly advise on the Town's fire protection requirements for the building.

Let me know if you have any questions or concerns.

Kind Regards,

Sehrish

IMPORTANT NOTICE: This message is intended only for the use of the individual or entity to whom it is addressed. The message may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify me immediately. IMPORTANT NOTICE: This message is intended only for the use of the individual or entity to whom it is addressed. The message may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication is entity to whom it is addressed. The message may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify me immediately.

Project: Phase A - Long Sault Project No.: 1909-5629 Date: 2021-10-20 Designed By: SA Checked By: KR

CREWS on October 19, 2021.

WATER DEMAND CALCULATIONS LONG SAULT LOGISTICS VILLAGE – PHASE A TOWNSHIP OF SOUTH STORMONT, UNITED COUNTIES OF SOUTH STORMONT, DUNDAS & GLENGARRY

Phase A Site Area:	35.6	ha
Proposed Building GFA:	861	m²
Occupancy:	Industrial	
Design Population:	8	employee/ 8hr Shift
		0
Average Dailyy Demand:	35	m³/ha/day
Max Day Factor:	2.75	
De al-Haur Franker	4.10	
Peak Hour Factor:	4.13	
Average Day Flow:	3,010	L/day
	0.03	L/s
Maximum Day Flow:	8,278	L/day
	0.10	L/s
Peak hour flow:	12,430	L/day
	0.14	L/s

Note: A future office expansion area is shown on the Site Plan received on September 14, 2021. The population and ground floor area of the office expansion is unknown at this time. As such, the future office expansion has <u>not</u> been included in the water demand calculations. A separate application will be required for the future office expansion.

The Design Population is based on input from the CREWS from the teleconferene dated September 22, 2021. Average Day Demand for Light Industrial from Section 3.4.4 from the

References

The Phase A Site Area is approximated based on the Site Plan received from Republic Urbanism dated July 17, 2021 and the proposed shop GFA is approximated based on correspondance with

Peak Hour Factor and Maximum Day Factor based on Table 3-1 (500-1000) of Design Guidelines for Drinking Water Systems (MOE, 2008)

CFCA	File:	1909-5629	Page	1
Fire Pro Part 3 o	otection Wa of the Ontar	iter Supply Guideline io Building Code (2006)		
	Q = KVS	бтот		
Q = K = V = S _{TOT} =	minimum water sup total build total of sp	supply of water in litres (L) ply coefficient ing volume in cubic metres atial coefficient values from property line exposures on all sides		
K =	31.0 861 4.0	Group F, Division 3 building with combustible construction conforming to OBC 3.2.2 (Table 1) m ² , floor area m, assumed height of ceiling	Spacial Coefficients S1 S2	0
	3444 1	$m^3,$ total building volume S_{TCT} = 1 + Sum (Spacial Coefficients), Need Not Exceed 2.0	S3 S4 Sum	0 0 0
V = S _{TOT} =				
V = S _{TOT} = Q =	106	5764 L		

 Notes:

 1
 Spacial coefficients based on Figure 1 found on Page 1. Each spacial coefficient represents the exposure distance from other buildings on the north, east, south, and west sides of the building.

 2
 The building area and classification is based on correspondance with CREWS dated October 19, 2021.

PROJECT NAME: Phase A - Shop Long Sault Logistics Village Fire Protection Volume Calculation CFCA File: 1909-5629

October 20, 2021

2

Page

Table	2

Q	F (L/min)
<=108000	2700
108,000 to 135,000	3600
135,000 to 162,000	4500
162,000 to 190,000	5400
190,000 to 270,000	6300
270,000+	9000

Table 1								
Water Supply Coefficient - K								
	Classification by Group or Division in Accordance with Table 3.1.2.1. of the Building Code							
Type of Construction	A-2 B-1 B-2 B-3 C D	A-4 F-3	A-1 A-3	E F-2	F-1			
Building is of noncombustible construction with fire separations and fire- resistance ratings provided in accordance with Subsection 3.2.2., including loadbearing walls, columns and arches.	10	12	14	17	23			
Building is of noncombustible construction or of heavy timber construction conforming to Article 3.1.4.6. Floor assemblies are fire separations but with no fire-resistance rating. Roof assemblies, mezzanines, loadbearing walls, columns and arches do not have a fire-resistance rating.	16	19	22	27	37			
Building is of combustible construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2, including loadbearing walls, columns and arches. Noncombustible construction may be used in lieu of fire-resistance rating where permitted in Subsection 3.2.2.	18	22	25	31	41			
Building is of combustible construction. Floor assemblies are fire separations but with no fire-resistance rating. Roof assemblies, mezzanines, loadbearing walls, columns and arches do not have a fire-resistance rating.	23	28	32	39	53			
Column 1	2	3	4	5	6			

Figure 1

APPENDIX C

Hydrologic Modelling Parameters

D.A. NAME	102A
D.A. AREA (ha)	2.25

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 102A

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	36%	0.80
D	-	D	63%	1.41
N = BD	-	BD	2%	0.04
Total Area				2.25

Impervious La	anduses Pre	sent:										
	Roadv	vay	Sidew	alk	Drivev	vay	Buildir	ng	SW	MF	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	0	98	0.0	98	0	98	0	0
D		98	0	98	0	98	0.0	98	0	98	0	0
BD		98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area			0		0		0.0		0			
Pervious Land	duses Prese	nt:										
	Woodl	and	Mead	adow Wetland		Ind	Lawn		Cultivated		Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B	0.38	60			0.43	50					0.81	44.30
D	0.09	79			1.32	50					1.41	73.11
BD	0.01	69.5			0.03	50					0.03	1.60
Subtotal Area	2.25											
							Total Pervio	us Area	1		2.25	
				C	Composite Ar	ea	Total Imperv	vious Ar	ea		0	
					Calculations	5	% Imperviou	JS			0.00%	
							Composite 0	Curve N	lumber		52.9	
							Total Area C	Check			2.25	

Initial Abstraction and Tp Calculations

Initial Abstraction				Composite Runoff Coefficient							
IA (mm)	Area	A * I A		В		D	В	D			
IA (IIIII)	(ha)	AIA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
	0.475	2.21825	0.25	0.80	0.35	1.41	0.30	0.04			0.7055
	0	0									0
4 67	1.775	8.28925									0
4.07	0	0									0
	0.00	0									0.00
	0	0									0
	2.25	4.67	Compos	site Runoff	Coefficient						0.31356
ip of South	n Stormo	nt recomm	ends IA	of 4.67 for	pervious a	reas.					
Tim	ie to Pea	k Inputs				Uplands		Brai	nsby	Air	port
Length	Drop	Slope	V/c ^{0.5}	Velocity	Te (br)	Tp(br)	TOTAL	Tc (br)	Tn(hr)	Tc (hr)	Tn(hr)
(m)	(m)	(%)	V/3	(m/s)	10 (11)	1Þ(iii)	Tp (hr)	10 (11)	i þ(iii)	10 (11)	1P(III)
								0.54	0.36	1.15	0.77
											•
575	4	0.7%	NA	Na	NA	NA	NA				
										•	
	itial Abstra IA (mm) 4.67 ip of South Length (m) 575	itial Abstraction IA (mm) Area (ha) 0.475 0 4.67 0 0.00 0 2.25 ip of South Stormo Time to Pea Length Drop (m) (m) 575 4	Area (ha) A * IA IA (mm) Area (ha) A * IA 0.475 2.21825 0 0 4.67 0 0.00 0 0.00 0 0.225 4.67 ip of South Stormont recomm Time to Peak Inputs Length Drop Slope (m) (%)	Area (ha) A * IA IA (mm) Area (ha) A * IA 0.475 2.21825 0.25 0 0 0 4.67 1.775 8.28925 0 0 0 4.67 0.00 0 0.00 0 0 2.25 4.67 Composition ip of South Stormont recommends IA of Time to Peak Inputs V/S ^{0.5} Length Drop Slope (m) (m) (%) 575 4 0.7% NA	Area (ha) A * IA B IA (mm) Area (ha) A * IA RC Area 0.475 2.21825 0.25 0.80 0 0 0 0 4.67 1.775 8.28925 0 0 0 0 0 2.25 4.67 Composite Runoff ip of South Stormont recommends IA of 4.67 for Time to Peak Inputs Length Drop Slope (m) (m) (%) V/S ^{0.5} Velocity (m) (m) 0.7% NA Na	Area (ha) A * IA B IA (mm) Area (ha) A * IA B 0.475 2.21825 0.25 0.80 0.35 0 0 0 0.475 0.25 0.80 0.35 4.67 1.775 8.28925 0.25 0.80 0.35 0 0 0 0 0 0 0 2.25 4.67 Composite Runoff Coefficient 0 0 0 0 2.25 4.67 Composite Runoff Coefficient 0 0 0 0 2.25 4.67 Composite Runoff Coefficient 0	Composite FIA (mm)Area (ha)A * IABDIA (mm)Area (ha)A * IARCArea RCArea0.4752.218250.250.800.351.414.670 000004.671.7758.289250.250.800.351.41000000002.254.67Composite Runoff Coefficient00010 00000002.254.67Composite Runoff Coefficient0010 of South Stormont recommends IA of 4.67 for pervious areas.UplandsTime to Peak InputsUplandsLengthDropSlope (m)V/S ^{0.5} Velocity (m/s)Tc (hr)Tp(hr)57540.7%NANaNANAAppropriate colouidated time to peak0.77Appropriate Method	Composite Runoff CoIA (mm)Area (ha)A * IABDBRCAreaRCAreaRC0.4752.218250.250.800.351.410.304.670000004.671.7758.289250.250.800.351.410.300000000002.254.67Composite Runoff Coefficient0002.254.67Composite Runoff Coefficient00010 f South Stormont recommends IA of 4.67 for pervious areas.Uplands1010LengthDropSlope (m)V/S ^{0.5} Velocity (m/s)Tc (hr)Tp(hr)TOTAL Tp (hr)57540.7%NANaNANANAApprendicte color/leted time to peak/0.77Apprendicte Method:	Composite Runoff CoefficientIA (mm)Area (ha)A * IABDBDIA (mm)A * IA (ha)RCAreaRCAreaRCArea0.4752.218250.250.800.351.410.300.044.670 00000004.671.7758.289250.250.800.351.410.300.0400000000002.254.67Composite Runoff Coefficient00002.254.67Composite Runoff Coefficient00010 f South Stormont recommends IA of 4.67 for pervious areas.Tottal Tottal Tp (hr)Tottal Tc (hr)Tottal Tp (hr)LengthDropSlope (m)V/S ^{0.5} Velocity (m/s)Tc (hr)Tottal Tp (hr)Tc (hr)57540.7%NANaNANANAAppropriate colouidated time to peak0.77Appropriate Method;Air	Ititial Abstraction Composite Runoff Coefficient IA (mm) Area (ha) A * IA B D BD IA (mm) A * IA RC Area Are	Itial Abstraction Composite Runoff Coefficient IA (mm) Area (ha) A * IA B D BD IA (mm) A* IA RC Area Area RC Area RC Area RC Area Ar

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.
 Initial Abstraction values obtained from Table 10.2, NVCA Stormwater Technical Guide (2013)

I:\1900\1909 - Avenue 31\5629_Long Sault Bus Pk\Design\Civil_Water\Stormwater Master Plan\VO Models\Phase A Model\AG Final - Input Parameters - CN, IA, TP (AG updated)

D.A. NAME	102F
D.A. AREA (ha)	2.15

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 102F

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	34%	0.74
D	-	D	66%	1.41
N = BD	-	BD	0%	0.00
Total Area				2.15

Impervious Lan	duses Pi	resent										
	Road	lway	Sidew	alk	Drivev	vay	Buildin	ng	SWI	MF	Subt	otals
Soils	Area	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	0.56	98	0.0	98	0	98	0.56	54.88
D		98	0	98	1.28	98	0.0	98	0	98	1.28	125.44
BD		98	0	98	0.00	98	0.0	98	0	98	0	0
Subtotal Area			0		1.84		0.0		0			
Pervious Landu	ises Pres	sent:										
	Wood	lland	Mead	ow	Wetla	Ind	Lawn		Cultivated		Subt	otals
Soils	Area	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B							0.18	69			0.18	12.42
D							0.13	84			0.13	10.92
BD											0.00	0.00
Subtotal Area							0.31					
							Total Pervio	us Area			0.31	
				C	Composite Ar	ea	Total Imperv	ious Ar	ea		1.84	
					Calculations	5	% Imperviou	IS			85.58%	* 75%
							Composite C	Curve N	umber		94.7	
	Total Area Check 2.15											

*Note: Assumed that area is compacted gravel. Percent imperviousness reduced to 75%. Initial Abstraction and Tp Calculations

Init	ial Abstr	action		Composite Runoff Coefficient									
Londuco	IA	Area	A * I A		В		D	E	3D				
Lanuuse	(mm)	(ha)	AIA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC	
Woodland		0	0	0.90	0.74	0.90	1.41	0.90	0.00			1.935	
Meadow		0	0									0	
Wetland	1 57	0	0									0	
Lawn	1.57	0.31	0.4867									0	
Cultivated		0.00	0									0.00	
Impervious		1.84	2.8888									0	
Composite IA*		2.15	0	Compos	ite Runoff	Coefficien	t					0.9	
	*Towns	hip of S	South Storr	nont reco	ommends I	A of 1.57 f	or pervious	areas.					
	Tim	ie to Pe	ak Inputs				Uplands		Bran	isby	Air	port	
Elow Doth	Longt	Drop	Slope		Valagity								

Flow Path Description	Lengt h (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Concentrated		· · ·	NA				NA		NA	NA	NA	NA
	Approp	riate calo	culated tir	ne to	NA	Appropriate	e Method:		Bran	isby		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.
 Initial Abstraction values obtained from Table 10.2, NVCA Stormwater Technical Guide (2013)

I:\1900\1909 - Avenue 31\5629_Long Sault Bus Pk\Design\Civil_Water\Stormwater Master Plan\VO Models\Phase A Model\AG Final - Input Parameters - CN, IA, TP (AG updated)

D.A. NAME	105A
D.A. AREA (ha)	4.53

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 105A

Curve Number Calculation

Soil Types Present: Type ID Hydrologic Group % Area Area B - BD 5% 0.22 - 0% - 0% Total Area 4.53 Impervious Landuses Present: Roadway Sidewalk Driveway Building SWMF Subtotals - Roadway Sidewalk Driveway Building SWMF Subtotals - B 98 0 98 0.0 98 0 0 B 98 0 98 0 98 0 98 0 0 B 98 0 98 0 98 0 98 0 0 B 98 0 98 0 98 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								-					
Type ID Hydrologic Group % Area Area B - B 95% 4.31 N = BD - BD 5% 0.22 Total Area 4.53 - 0% Total Area 4.53 - - 0% Impervious Landuses Present: - - - - - Soils Area (ha) CN Area (ha) CN Area (ha) CN Area - BD 98 0 98 0 98 0 0 0 - - BD 98 0 98 0 98 0 98 0	Soil Types Pre	esent:											
B - B 95% 4.31 N = BD - BD 5% 0.22 O% 0% - 0% Total Area 4.53 Impervious Landuses Present: - - Soils Area (ha) CN Area (ha) CN Area (ha) CN B 98 0 98 0.98 0.0 98 0 98 0 B 98 0 98 0.98 0.0 98 0 98 0 0 0 B 98 0 98 0 98 0.0 98 0 98 0 0 0 98 0 98 0 98 0	Туре		ID	Hydrologic	: Group	% Area	Area						
N = BD - BD 5% 0.22 0% Total Area 4.53 -	В		-	В		95%	4.31						
Impervious Landuses Present: Sidewalk Driveway Building SWMF Subtotals Soils Area (ha) CN O 0 <t< td=""><td>N = BD</td><td></td><td>-</td><td>BD</td><td></td><td>5%</td><td>0.22</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	N = BD		-	BD		5%	0.22						
Total Area 4.53 Impervious Landuses Present: Roadway Sidewalk Driveway Building SWMF Subtotals B 98 0 98 0 98 0.0 98 0 98 0 0 0 B 98 0 98 0 98 0.0 98 0 98 0			-			0%							
Impervious Landuses Present: Roadway Sidewalk Driveway Building SWMF Subtotals Soils Area (ha) CN Area (ha) O 0	Total Area						4.53						
Impervious Landuses Present: Sidewalk Driveway Building SWMF Subtotals Soils Area (ha) CN Area (ha) O 0													
Roadway Sidewalk Driveway Building SWMF Subtotals Soils Area (ha) CN Pres D </td <td>Impervious La</td> <td>Induses Pres</td> <td>sent:</td> <td></td>	Impervious La	Induses Pres	sent:										
Soils Area (ha) CN Base (ha) CN Area (ha) <th< td=""><td></td><td>Roadv</td><td>vay</td><td>Sidew</td><td>alk</td><td>Drive</td><td>way</td><td colspan="2">Building SWN</td><td>IF</td><td>Sub</td><td>totals</td></th<>		Roadv	vay	Sidew	alk	Drive	way	Building SWN		IF	Sub	totals	
B 98 0 98 0 98 0 98 0 98 0 98 0 98 0	Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
BD 98 0 98 0 98 0.0 98 0 98 0 0 98 0 98 0 98 0.0 98 0 98 0 0 Subtotal Area 0 0 0 0.0 0	B		98	0	98	0	98	0.0	98	0	98	0	0
98 0 98 0 98 0 98 0 98 0 0 Subtotal Area 0 <td> BD</td> <td></td> <td>98</td> <td>0</td> <td>98</td> <td>0</td> <td>98</td> <td>0.0</td> <td>98</td> <td>0</td> <td>98</td> <td>0</td> <td>0</td>	BD		98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area 0 0 0.0 0 Pervious Landuses Present:			98	0	98	0	98	0.0	98	0	98	0	0
Pervious Landuses Present: Woodland Meadow Wetland Lawn Cultivated Subtotals Soils Area (ha) CN Area (ha) CN Area (ha) CN Area Area (ha) CN Area Area (ha) CN Area Area <t< td=""><td>Subtotal Area</td><td></td><td></td><td>0</td><td></td><td>0</td><td></td><td>0.0</td><td></td><td>0</td><td></td><td>_</td><td>-</td></t<>	Subtotal Area			0		0		0.0		0		_	-
Pervious Landuses Present: Woodland Meadow Wetland Lawn Cultivated Subtotals Soils Area (ha) CN Area (ha) CN <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>						-				-			
WoodlandMeadowWetlandLawnCultivatedSubtotalsSoilsArea (ha)CNArea (ha)CO0.0213.930.000	Pervious Land	luses Prese	nt:										
Soils Area (ha) CN Area (ha) <th< td=""><td></td><td>Woodla</td><td>and</td><td>Meade</td><td colspan="3">dow Wetland</td><td colspan="2">Lawn</td><td colspan="2">Cultivated</td><td colspan="2">Subtotals</td></th<>		Woodla	and	Meade	dow Wetland			Lawn		Cultivated		Subtotals	
B 4.01 60 0.30 50 4.31 255.60 BD 0.15 69.5 0.07 50 0.22 13.93 Subtotal Area 4.16 0.37 0.00 0.00 0.00 0.00 Subtotal Area 4.16 0.37 Total Pervious Area 4.53 0 Composite Area Calculations % Impervious 0.00% 0.00%	Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
BD 0.15 69.5 0.07 50 0.07 50 0.00 0.22 13.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00	B	4.01	60			0.30	50	× /				4.31	255.60
0.00 0.00 0.00 0.00 0.00 Subtotal Area 4.16 0.37 Total Pervious Area 4.53 Composite Area Total Impervious Area 0 Calculations % Impervious 0.00%	BD	0.15	69.5			0.07	50					0.22	13.93
Subtotal Area 4.16 0.37 Composite Area Total Pervious Area 4.53 Calculations % Impervious 0.00% Composite Curve Number 59.5		0.00										0.00	0.00
Composite Area Total Pervious Area 4.53 Composite Area Total Impervious Area 0 Calculations % Impervious 0.00%	Subtotal Area	4.16				0.37						0.00	0.00
Composite AreaTotal Pervious Area4.53Composite AreaTotal Impervious Area0Calculations% Impervious0.00%Composite Curve Number59.5						0.01							
Composite Area Total Impervious Area 0 Calculations % Impervious 0.00% Composite Curve Number 59.5								Total Pervious Area				4.53	
Calculations % Impervious 0.00%					C	Composite A	Total Impervious Area				0		
Composite Curve Number 59.5						Calculation	s	% Imperviou	IS			0.00%	
						2	-	Composite (Curve N	lumber		59.5	
Total Area Check 4 53								Total Area C	Check			4.53	

Initial Abstraction and Tp Calculations

lı lı	nitial Abstra	action					Composite	Runoff C	Coefficient			
Landuse	IA (mm)	Area	Δ * ΙΔ		В	N =	= BD		D			
Landuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		4.16	19.4272	0.25	4.31	0.35	0.22	0.30	0.00			1.15275
Meadow		0	0									0
Wetland	4 67	0.37	1.7279									0
Lawn	4.07	0	0									0
Cultivated		0	0									0.00
Impervious		0	0									0
Composite IA		4.53	4.67	Compos	ite Runoff	Coefficient						0.25447
	*Township	of South	n Stormont	recomm	ends IA of	4.67 for pe	ervious area	as.				
	Tim	e to Pea	k Inputs				Uplands		Bransby	Williams	Air	port
Flow Path	Length	Drop	Slope	V/S ^{0.5}	Velocity	Tc (hr)	Tn(hr)	Total	Tc (hr)	Tn(hr)	Tc (hr)	Tn(hr)
Description	(m)	(m)	(%)	v/3	(m/s)	10 (11)	19(11)	Tp (hr)	10 (11)	· P(iii)	10 (11)	10(11)
Concentrated	546.3	11	2.0%	NA	NA	NA	NA	NA	0.39	0.26	0.85	0.57
	Appropriat	e calcula	ted time to	neak.	0.57	Appropria	to Mothod.		Δirr	ort		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. NAME 105F D.A. AREA (ha) 5.37

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 105F

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	95%	5.12
N = BD	-	BD	5%	0.25
	-			
Total Area				5.37

Impervious La	pervious Landuses Present:											
	Roadw	vay	Sidew	alk	Drivev	vay	Buildir	ng	SW	MF	Subt	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	3.87	98	0.0	98	0	98	3.87	379.26
BD		98	0	98	0.25	98	0.0	98	0	98	0.25	24.5
		98	0	98	0.00	98	0.0	98	0	98	0	0
Subtotal Area			0		4.12		0.0		0			
Pervious Lanc	Juses Prese	nt:										
	Woodla	and	Meade	dow Wetland			Lawr	Lawn Cultivated		ated	Subt	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B							1.25	69			1.25	86.25
BD											0.00	0.00
											0.00	0.00
Subtotal Area							1.25					
							Total Pervio	us Area	l		1.25	
				C	Composite Are	ea	Total Imperv	vious Ar	ea		4.12	
				Calculations			% Impervious				76.72%	
							Composite (Curve N	umber		91.2	
	Total Area Check 5.37											

Initial Abstraction and Tp Calculations

	nitial Abstra	action					Compos	ite Runoff	Coefficie	ent		
Londuco	IA (mm)	Area	A * 1 A		В	N :	= BD	E	3D			
Lanuuse	IA (IIIII)	(ha)	AIA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		0	0	0.90	5.12	0.90	0.25		0.00			4.833
Meadow		0	0									0
Wetland	1 57	0	0									0
Lawn	1.57	1.25	1.9625									0
Cultivated		0.00	0									0.00
Impervious		4.12	6.4684									0
Composite IA		5.37	1.57	Compos	site Runoff	Coefficien	t					0.9
	*Township	of South	n Stormont	recomm	ends IA of	1.57 for p	ervious are	eas.				
	Tim	e to Pea	k Inputs				Uplands		Brar	nsby	Air	port
Flow Path	Length	Drop	Slope	0.5	Velocity	To (br)	Tp(br)	TOTAL	To (br)	Tn(hr)	Te (br)	Tp(br)
Description	(m)	(m)	(%)	V/S**	(m/s)	TC (III)	1p(iii)	Tp (hr)	10 (III)	1 p(m)	10 (11)	1p(iii)
NA			NA				NA		NA	NA	NA	NA
									10,1			
									_			
	Appropriat	te calcula	ated time to	o peak:	NA	Appropria	te Method:		Brar	nsby		

Appropriate calculate

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. NAME	106A
D.A. AREA (ha)	4.21

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 106A

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	4.21
'	-		0%	
	-		0%	
Total Area				4.21

Impervious La	Induses Pres	sent:										
	Roadw	/ay	Sidew	alk	Drivev	vay	Buildin	ig	SWM	F	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area			0		0		0.0		0			
Pervious Land	luses Prese	nt:										
	Woodland Me				Wetla	nd	Lawn	1	Cultivated		Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	4.21	60									4.21	252.60
	0.00										0.00	0.00
	0.00										0.00	0.00
Subtotal Area	4.21											
							Total Pervio	us Area	a		4.21	
				C	Composite Are	ea	Total Imperv	vious A	rea		0	
					Calculations		% Impervious				0.00%	
							Composite C	Curve N	lumber		60.0	
							Total Area C	Check			4.21	

Initial Abstraction and Tp Calculations

lr	nitial Abstra	action				(Composite	Runoff C	oefficient			
Londuco	IA (mm)	Area	A * I A		В	E	3D		В			
Lanuuse	IA (IIIII)	(ha)	A IA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		4.21	19.6607	0.25	4.21	0.35	0.00	0.30	0.00			1.0525
Meadow		0	0									0
Wetland	4 67	0	0									0
Lawn	4.07	0	0									0
Cultivated		0	0									0.00
Impervious		0	0									0
Composite IA		4.21	4.67	Compos	ite Runoff	Coefficien	t					0.25
	*Township	of South	n Stormont	recomm	ends IA of	4.67 for pe	ervious area	as.				
	Tim	e to Pea	k Inputs				Uplands		Bransby	Williams	Air	port
Flow Path	Length	Drop	Slope	V/c ^{0.5}	Velocity	To (br)	Tn(hr)	TOTAL	Tc (br)	Tn(hr)	Tc (hr)	Tn(hr)
Description	(m)	(m)	(%)	V/S	(m/s)	10 (III)	1Þ(III)	Tp (hr)	10 (III)	1 p(iii)	10 (11)	1 P(III)
Concentrated	467.7	13	NA	NA	NA	NA	NA	NA	0.31	0.21	0.71	0.48
	Appropriat	e calcula	ated time to	peak:	0.48	Appropria	te Method:		Airp	ort		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method

seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 107A

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	3.94
	-		0%	
	-		0%	
Total Area				3.94

Impervious La	Induses Pres	sent:										
	Roadw	/ay	Sidew	alk	Drivev	vay	Buildin	ig	SWM	F	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area			0		0		0.0		0			
Pervious Land	luses Prese	nt:										
	Woodla	and	Mead	ow	Wetla	nd	Lawn	1	Cultiva	ted	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	3.94	60									3.94	236.40
	0.00										0.00	0.00
	0.00										0.00	0.00
Subtotal Area	3.94											
							Total Pervio	us Area	а		3.94	
				C	Composite Are	ea	Total Imperv	vious A	rea		0	
					Calculations	5	% Imperviou	IS			0.00%	
							Composite C	Curve N	lumber		60.0	
							Total Area C	Check			3.94	

Initial Abstraction and Tp Calculations

Ir	nitial Abstra	action					Composite F	Runoff C	oefficient			
Landuco	IA (mm)	Area	A * I A		В		BD		В			
Lanuuse	IA (IIIII)	(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		3.94	18.3998	0.25	3.94	0.35	0.00	0.30	0.00			0.985
Meadow		0	0									0
Wetland	4 67	0	0									0
Lawn	4.07	0	0									0
Cultivated		0.00	0									0.00
Impervious		0	0									0
Composite IA		3.94	4.67	Compos	ite Runoff	Coefficier	nt					0.25
	*Township	of South	n Stormont	recomm	ends IA of	4.67 for p	ervious area	as.				
	Tim	e to Pea	k Inputs				Uplands		Bransby	Williams	Air	port
Flow Path	Length	Drop	Slope	V/c ^{0.5}	Velocity	Tc (hr)	Tp(br)	TOTAL	Tc (br)	Tn(hr)	Tc (hr)	Tn(hr)
Description	(m)	(m)	(%)	V/3	(m/s)	10 (11)	1 P(III)	Tp (hr)	10 (11)	1 P(III)	10 (11)	1 P(III)
									0.26	0.17	0.63	0.42
										••••		••••=
Concentrated	388.4	12	3.1%	0.7396	0.13	0.83	0.556043	0.56				
	• · .	<u> </u>										
	Appropriat	e calcula	ated time to	peak:	0.42	Appropria	ate Method:		Airp	oort		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

107F_1 D.A. NAME D.A. AREA (ha)

4.21

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 107F_1

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	4.21
	-			
	-			
Total Area				4 21

Impervious La	Induses Pre	sent:										
	Roadv	vay	Sidew	alk	Drivev	vay	Buildir	ng	SW	MF	Subt	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	3.15	98	0.0	98	0	98	3.15	308.7
		98	0	98	0.00	98	0.0	98	0	98	0	0
		98	0	98	0.00	98	0.0	98	0	98	0	0
Subtotal Area			0		3.15		0.0		0			
Pervious Land	luses Prese	nt:										
	Woodla	and	Mead	ow	Wetla	Ind	Lawr	۱	Cultiv	ated	Subt	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B							1.06	69			1.06	73.14
											0.00	0.00
											0.00	0.00
Subtotal Area							1.06					
							Total Pervio	us Area	l		1.06	
				C	Composite Ar	ea	Total Imperv	vious Ar	ea		3.15	
					Calculations	5	% Imperviou	JS			74.82%	
							Composite (Curve N	umber		90.7	
							Total Area C	Check			4.21	

Initial Abstraction and Tp Calculations

I	nitial Abstra	action					Compos	ite Runoff	Coefficie	ent		
Landuco	IA (mm)	Area	A * I A		В		0	E	3D			
Lanuuse	IA (IIIII)	(ha)	A IA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		0	0	0.90	4.21	0.90	0.00		0.00			3.789
Meadow		0	0									0
Wetland	4.67	0	0									0
Lawn	4.07	1.06	4.9502									0
Cultivated		0.00	0									0.00
Impervious		3.15	14.7105									0
Composite IA		4.21	4.67	Compos	site Runoff	Coefficien	t					0.9
	*Township	of South	n Stormont	recomm	ends IA of	4.67 for pe	ervious are	eas.				
	Tim	e to Pea	k Inputs				Uplands		Brar	nsby	Air	port
Flow Path	Length	Drop	Slope	0.5	Velocity	To (br)	Tn(hr)	TOTAL	To (br)	Tn(hr)	To (br)	Tp(br)
Description	(m)	(m)	(%)	V/5	(m/s)	10 (III)	1p(iii)	Tp (hr)	10 (III)	1 p(iii)	10 (11)	1 p(11)
NA			NA				NA		NA	NA	NA	NA
		<u> </u>										
	Appropriat	e calcula	ated time to	peak:	NA	Appropria	te Method:		N	A		

Appropriate calculated time to peak:

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

5. Initial Abstraction values obtained from Table 10.2, NVCA Stormwater Technical Guide (2013)

I:\1900\1909 - Avenue 31\5629_Long Sault Bus Pk\Design\Civil_Water\Stormwater Master Plan\VO Models\Phase A Model\AG Final - Input Parameters - CN, IA, TP (AG updated)

D.A. NAME D.A. AREA (ha) 107F_2 1.72

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 107F_2

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	1.72
	-		0%	
	-			
Total Area				1 72

Impervious La	induses Pres	sent:										
	Roadw	vay	Sidew	alk	Drivev	vay	Buildir	ng	SW	MF	Subt	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	1.53	98	0.0	98	0	98	1.53	149.94
		98	0	98	0.00	98	0.0	98	0	98	0	0
		98	0	98	0.00	98	0.0	98	0	98	0	0
Subtotal Area			0		1.53		0.0		0			
Pervious Land	Juses Prese	nt:										
	Woodla	and	Meade	ow	Wetla	Ind	Lawr	l	Cultiv	ated	Subt	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B							0.19	0.69			0.19	0.13
											0.00	0.00
											0.00	0.00
Subtotal Area							0.19					
							Total Pervic	ous Area			0.19	
				C	Composite Are	ea	Total Imperv	vious Ar	ea		1.53	
					Calculations	5	% Imperviou	JS			88.95%	
							Composite	Curve N	umber		87.3	
							Total Area (Check			1.72	

Initial Abstraction and Tp Calculations

	nitial Abstra	action					Compos	ite Runoff	Coefficie	ent		
Landuse	IA (mm)	Area	Δ * ΙΔ		В		0	E	3D			
Lanuuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		0	0	0.90	1.72	0.90	0.00		0.00			1.548
Meadow		0	0									0
Wetland	4.67	0	0									0
Lawn	4.07	0.19	0									0
Cultivated		0.00	0.00									0.00
Impervious		1.53	0									0
Composite IA		1.72	0	Compos	site Runoff	Coefficien	t					0.9
	*Township	of South	n Stormont	recomm	ends IA of	4.67 for pe	ervious are	eas.				
	Tim	e to Pea	k Inputs				Uplands		Brar	nsby	Air	port
Flow Path	Length	Drop	Slope	0.5	Velocity	To (br)	Tp(br)	TOTAL	To (br)	Tn(hr)	To (br)	Tp(br)
Description	(m)	(m)	(%)	V/S	(m/s)	10 (III)	1P(III)	Tp (hr)	10 (11)	1 P(III)	10 (11)	1p(iii)
NA			NA				NA		NA	NA	NA	NA
							10.1		10,1			
	Appropriat	e calcula	ited time to	peak:	NA	Appropria	te Method:		N	A		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 108A

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	2.69
D	-		0%	
	-		0%	
Total Area				2.69

Impervious La	Induses Pres	sent:										
	Roadw	/ay	Sidew	alk	Drivev	vay	Buildin	ig	SWN	IF	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area			0		0		0.0		0			
Pervious Land	luses Prese	nt:										
	Woodla	and	Meade	ow	Wetla	ind	Lawn	1	Cultiva	ted	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	2.51	60					0.19	69			2.69	163.07
	0.00										0.00	0.00
	0.00										0.00	0.00
Subtotal Area	2.51						0.19					
								•			0.00	
							Total Pervio	us Area	а		2.69	
				C	composite Ar	ea	I otal Imperv	lous A	rea		0	
					Calculations	6	% Imperviou	IS			0.00%	
							Composite C	Curve N	lumber		60.6	
							Total Area C	Check			2.69	

Initial Abstraction and Tp Calculations

	nitial Abstra	action		Composite Runoff Coefficient								
Landuco	IA (mm)	Area	A * I A		В		D		3D			
Lanuuse	IA (IIIII)	(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	2.505	25.05	0.25	2.69	0.35	0.00	0.30	0.00			0.6725
Meadow	8	0	0									0
Wetland	16	0	0									0
Lawn	5	0.185	0.925									0
Cultivated	7	0.00	0.00									0.00
Impervious	2	0	0									0
Composite IA		2.69	9.65613	Compos	site Runoff	Coefficien	t					0.25

	Tim	ne to Pea	k Inputs				Uplands		Bransby	Williams	Air	port
Flow Path	Length	Drop	Slope	V//S ^{0.5}	Velocity	Tc (hr)	Tp(hr)	TOTAL	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Description	(m)	(m)	(%)	v/0	(m/s)	,	• • • • • • •	<u>Tp (hr)</u>	,	· P()	,	· P(···)
Concentrated	350.3	14	4.0%	0.6503	0.13	0.75	0.501498	0.50	0.23	0.15	0.55	0.37
	Appropria	te calcula	ted time t	o neak:	0.37	Appropria	ate Method:		Airr	ort		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. N	AME	108F
D.A. A	REA (ha)	1.57

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 108F

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	1.57
•	-		0%	
	-			
Total Area				1.57

Impervious La	induses Pres	sent:										
	Roadw	vay	Sidew	alk	Drivev	vay	Buildir	ng	SW	MF	Subto	tals
Soils	Area (ha)	ĊN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	0.82	98	0.0	98	0	98	0.82	80.36
		98	0	98	0.00	98	0.0	98	0	98	0	0
		98	0	98	0.00	98	0.0	98	0	98	0	0
Subtotal Area			0		0.82		0.0		0			
Pervious Lanc	luses Prese	nt:										
	Woodla	and	Meado	ow	Wetla	ind	Lawn	1	Cultiv	ated	Subto	tals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B							0.75	69			0.75	51.75
											0.00	0.00
											0.00	0.00
Subtotal Area							0.75					
							Total Pervio	us Area	1		0.75	
				(Composite Are	ea	Total Imperv	/ious Ar	ea		0.82	
					Calculations	;	% Imperviou	JS			52.23%	
							Composite (Curve N	umber		84.1	
							Total Area C	Check			1.57	

Initial Abstraction and Tp Calculations

Notes:

I	nitial Abstra	action			Composite Runoff Coefficient								
Landuco	IA (mm)	Area	A * I A		В		0	E	3D				
Lanuuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC	
Woodland		0	0	0.90	1.57	0.90	0.00		0.00			1.413	
Meadow		0	0									0	
Wetland	1 57	0	0									0	
Lawn	1.57	0.75	1.1775									0	
Cultivated		0.00	0									0.00	
Impervious		0.82	1.2874									0	
Composite IA		1.57	1.57	Compos	ite Runoff	Coefficient	t					0.9	
	*Township	of South	n Stormont	recomm	ends IA of	1.57 for pe	ervious are	as.					
	Tim	e to Pea	k Inputs				Uplands		Brar	nsby	Airp	ort	
Flow Path	Length	Drop	Slope	0.5	Velocity	To (br)	Tp(br)	TOTAL	To (hr)	Tn(hr)	To (br)	Tn/hr)	
Description	(m)	(m)	(%)	V/5	(m/s)	TC (III)	1 p(iii)	Tp (hr)	TC (III)	1 p(ni)	1 C (III)	1p(iii)	
NA			NA				NA		NA	NA	NA	NA	
	Appropriat	e calcula	ated time to	peak:	NA	Appropria	te Method:		Brar	nsby			

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. NAME 108F EX D.A. AREA (ha)

1.18

Hydrologic Parameters: CALIB NASHYD Command Post Development Drainage Area: Catchment 108F_EX2

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	1.18
-	-		0%	
	-			
Total Area				1 18

Impervious La	Induses Pre	sent:										
	Roadv	/ay	Sidew	alk	Drivev	vay	Buildin	g	SWI	MF	Subt	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area			0		0		0.0		0			
Pervious Land	luses Prese	nt:										
	Woodla	and	Mead	ow	Wetla	ind	Lawn		Cultiv	ated	Subt	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B	1.16	60					0.02	69			1.18	70.98
											0.00	0.00
											0.00	0.00
Subtotal Area												
							Total Pervio	us Area	l		1.18	
				C	Composite Ar	ea	Total Imperv	vious Ar	ea		0	
					Calculations	5	% Imperviou	IS			0.00%	
							Composite C	Curve N	umber		60.2	
							Total Area C	heck			1.18	

Initial Abstraction and Tp Calculations

	nitial Abstra	action					Composit	e Runoff (Coefficier	nt		
Landuse	IA (mm)	Area	Δ * ΙΔ		В	E	3D		D			
Lanuuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		1.16	5.4	0.25	1.18	0.35	0.00	0.30	0.00			0.295
Meadow		0.00	0.0									0
Wetland	4.67	0.00	0.0									0
Lawn	4.07	0.02	0.1									0
Cultivated		0.00	0.0									0
Impervious		0.00	0.0									0
Composite IA		1.18	4.67	Compos	ite Runoff	Coefficien	t					0.25
	*Township	of South	n Stormont	recomm	ends IA of	4.67 for p	ervious are	as.				
	Tim	e to Pea	k Inputs				Uplands		Brar	nsby	Airp	ort
Flow Path	Length	Drop	Slope	V/C ^{0.5}	Velocity	To (br)	Tp(br)	TOTAL	Tc (hr)	Tn(hr)	Te (br)	Tp(br)
Description	(m)	(m)	(%)	V/3	(m/s)	10 (11)	1P(III)	Tp (hr)	10 (11)	1 P(III)	10 (11)	1 p(iii)
									0.28	0.19	0.63	0.42
Concentrated	377	11	2.9%	NA	NA	NA	NA	NA				
	Annanziat		to dition of to		0.40	Annania	to Mathadi		A :	ant	1	

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method

seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. NAME D.A. AREA (ha)

108F EX 0.43

Hydrologic Parameters: CALIB NASHYD Command Post Development Drainage Area: Catchment 108F_EX2

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	0.43
	-		0%	
	-			
Total Area				0.43

Impervious La	anduses Pre	sent:										
	Roadv	vay	Sidew	alk	Drivev	vay	Buildir	ng	SW	MF	Subto	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
		98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area			0		0		0.0		0			
Pervious Land	duses Prese	nt:										
	Woodl	and	Mead	ow	Wetla	Ind	Lawn	Ì	Cultiv	ated	Subto	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B	0.34	60					0.09	69			0.43	26.61
											0.00	0.00
											0.00	0.00
Subtotal Area												
							Total Pervio	us Area	l		0.43	
				C	Composite Ar	ea	Total Imperv	∕ious Ar	ea		0	
					Calculations	5	% Imperviou	IS			0.00%	
							Composite (Curve N	umber		61.9	
							Total Area C	Check			0.43	

Initial Abstraction and Tp Calculations

Area	A*RC
Area	A*RC
	0.1075
	0
	0
	0
	0.00
	0
	0.25
Airpo	ort
To (br)	Tn/hr)
10 (11)	1P(III)
0.78	0.53
7	
	Airpo Tc (hr) 0.78

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. NAME	109A
D.A. AREA (ha)	3.10

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 109A

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	76%	2.35
D	-	D	8%	0.26
N = BD	-	BD	16%	0.49
Total Area				3.10

Impervious La	anduses Pres	sent:										
	Roadway		Sidewalk		Driveway		Building		SWMF		Subtotals	
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B		98	0	98	0	98	0.0	98	0	98	0	0
D		98	0	98	0	98	0.0	98	0	98	0	0
BD		98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area	l		0		0		0.0		0			

Pervious Lanc	luses Prese	nt:										
	Woodl	and	Mead	ow	Wetla	ind	Lawn		Cultiva	ted	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	1.57	60			0.78	50					2.35	133.20
D	0.00	79			0.26	50					0.26	13.00
BD	0.00	69.5			0.49	50					0.49	24.50
Subtotal Area	1.57				1.53							
							Total Pervio	us Are	а		3.10	
				C	Composite Ar	ea	Total Imperv	vious A	rea		0	
					Calculations	6	% Imperviou	IS			0.00%	
							Composite C	Curve N	Number		55.1	
Total Area Check 3.1									3.1			

Initial Abstraction and Tp Calculations

li li	nitial Abstra	action				(Composite	Runoff C	oefficient			
Landuca	IA (mm)	Area	A * I A		В		D		BD			
Lanuuse		(ha)	A IA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		1.57	7.3	0.25	2.35	0.35	0.26	0.30	0.49			0.8255
Meadow		0.00	0.0									0
Wetland	4 67	1.53	7.1									0
Lawn	4.07	0.00	0.0									0
Cultivated		0.00	0.0									0.00
Impervious		0.00	0.0									0
Composite IA		3.1	4.67	Compos	site Runoff	Coefficient	t					0.26629
	*Township	of South	n Stormont	recomm	ends IA of	4.67 for pe	ervious are	as.				
	Tim	e to Pea	k Inputs			Uplands Br			Bransby	Williams	Air	port
Flow Path	Length	Drop	Slope	V/C ^{0.5}	Velocity	Tc (br)	Tp(br)	TOTAL	Tc (br)	Tn(hr)	Tc (hr)	Tn(hr)
Description	(m)	(m)	(%)	V/3	(m/s)	10 (11)	1Þ(iii)	Tp (hr)	10 (11)	1 P(III)	10 (11)	1 P(III)
									0.41	0.28	0.84	0.57
	=	10	A 404									
Concentrated	568	12	2.1%	0								
	۰. ۱				0.57	A .			A :			

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

a. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for TC calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method

seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 110A

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	2.19
•				0.00
				0.00
Total Area				2.19

Impervious La	induses Pre	sent:										
	Roadv	vay	Sidew	alk	Drivev	way	Buildir	ng	SW	MF	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	0.00	98	0.0	98	0	98	0	0
-		98	0	98	0.00	98	0.0	98	0	98	0	0
-		98	0	98	0.00	98	0.0	98	0	98	0	0
Subtotal Area			0		0		0.0		0			
Pervious Lanc	Juses Prese	nt:										
	Woodla	and	Meade	ow	Wetla	ind	Lawr	1	Cultiv	vated	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B	2.19	60		65		50	0.00	69		74	2.19	131.40
-											0.00	0.00
-											0.00	0.00
Subtotal Area	2.19				0.00							
							Total Pervio	ous Area	l		2.19	
				C	Composite Ar	ea	Total Imperv	vious Ar	ea		0	ļ
					Calculations	3	% Imperviou	JS			0.00%	
							Composite (Curve N	umber		60.0	ļ
							Total Area C	Check			2.19	

Initial Abstraction and Tp Calculations

Ir	nitial Abstra	action				C	Composite F	Runoff Co	efficient			
Landuco	IA (mm)	Area	A * I A		В		BD		D			
Lanuuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		2.19	10.2273	0.25	2.19	0.35	0.00	0.30	0.00			0.5475
Meadow		0	0									0
Wetland	4 67	0	0									0
Lawn	4.07	0	0									0
Cultivated		0.00	0									0.00
Impervious		0	0									0
Composite IA		2.19	4.67	Compos	ite Runoff	Coefficien	t					0.25
	*Township	of South	n Stormont	recomm	ends IA of	4.67 for p	ervious are	as.				
	Tim	e to Pea	k Inputs			Uplands			Bransby		Air	oort
Flow Path	Length	Drop	Slope	V/c ^{0.5}	Velocity	Tc (br)	Tn(hr)	TOTAL	Tc (hr)	Tn(hr)	Tc (hr)	Tn(hr)
Description	(m)	(m)	(%)	V/3	(m/s)	10 (11)	1P(III)	Tp (hr)	10 (11)	1 P(III)	10 (11)	i þ(iii)
Concentrated	418	12	2.9%									
							NA		0.30	0.20	0.67	0 45
							100		0.00	0.20	0.07	0.10
	Appropriat	e calcula	ated time to	peak:	0.45	Appropria	ite Method:		Airp	oort		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

 Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used. 5. Initial Abstraction values obtained from Table 10.2, NVCA Stormwater Technical Guide (2013)

D.A. NAME	109F
D.A. AREA (ha)	1.25

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 109F

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	40%	0.50
D	-	D	21%	0.26
N = BD	-	BD	39%	0.49
Total Area				1.25

Impervious La	anduses Pre	sent:										
	Roadv	vay	Sidew	/alk	Drivev	way	Buildir	ng	SW	MF	Subto	tals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B	i	98	0	98	0.50	98	0.0	98	0	98	0.5	49
D		98	0	98	0.26	98	0.0	98	0	98	0.26	25.48
BD		98	0	98	0.49	98	0.0	98	0	98	0.49	48.02
Subtotal Area	i		0		1.25		0.0		0			-
Pervious Land	duses Prese	nt:										
	Woodl	and	Mead	ow	Wetland		Lawr	1	Cultiv	/ated	Subto	tals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B	, , , , , , , , , , , , , , , , , , ,		· · · · ·		· · · ·		· · · · ·				0	0
D										I	0	0
Subtotal Area	l									I		-
							Total Pervic	us Area	4		0.00	
				C	Composite Ar	<u>-</u>	Total Imper		, '22	I	1 25	
					Calculation	50	% Imperviou		ea	I	100.00%	* 75%
					Calculations	,	Composite (15 Curuo N	lumbor	I	100.00 /0	*0C C
			Ł						umper		98.0	90.0
							I Otal Area (спеск			1.25	

*Note: Assumed that area is compacted gravel. Percent imperviousness reduced to 75%. Assumed that area is 5 % pervious. Curve number reduced to 96.6.

Bransby

Initial Abstraction and Tp Calculations

	nitial Abstra	action			Composite Runoff Coefficient									
Landuca	IA (mm)	Area	A * I A		В		D	E	3D					
Lanuuse		(ha)	A IA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC		
Woodland		0	0	0.90	0.50	0.90	0.26	0.90	0.49			1.125		
Meadow		0	0									0		
Wetland	1 57	0	0									0		
Lawn	1.57	0	0									0		
Cultivated		0.00	0									0.00		
Impervious		1.25	1.9625									0		
Composite IA		1.25	1.57	Compos	site Runoff	Coefficien	t					0.9		
	*Township	of South	n Stormont	recomm	ends IA of	1.57 for p	ervious are	as.						
	Tim	e to Pea	k Inputs				Uplands		Brar	nsby	Airp	ort		
Flow Path	Length	Drop	Slope	0.5	Velocity	To (br)	Tp(br)	TOTAL	To (br)	Tn(hr)	Te (br)	Tn(hr)		
Description	(m)	(m)	(%)	V/5	(m/s)	10 (III)	1p(iii)	Tp (hr)	10 (III)	1 p(m)	1 C (III)	1 p(iii)		

Concentrated	NA	NA	NA	NA	NA	NA

Appropriate calculated time to peak:

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

NA

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method

Appropriate Method:

seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A.	NAME	110F
D.A.	AREA (ha)	2.84

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 110F

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	2.84
				0.00
				0.00
Total Area				2 84

Impervious La	anduses Pre	sent:										
	Roadv	vay	Sidew	alk	Drivev	vay	Buildir	ng	SW	MF	Subto	tals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	2.84	98	0.0	98	0	98	2.84	278.32
-		98	0	98	0.00	98	0.0	98	0	98	0	0
-		98	0	98	0.00	98	0.0	98	0	98	0	0
Subtotal Area			0		2.84		0.0		0			
Pervious Land	duses Prese	nt:										
	Woodla	and	Mead	ow	Wetla	Ind	Lawn)	Cultiv	/ated	Subto	tals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B											0	0
-											0	0
Subtotal Area												
			I				Total Pervio	us Area	l		0.00	
				C	Composite Ar	ea	Total Imperv	ious Ar	ea		2.84	
					Calculations	5	% Imperviou	IS			100.00%	*75%
							Composite (Curve N	umber		98.0	*96.6
							Total Area C	Check			2.84	

*Note: Assumed that area is compacted gravel. Percent imperviousness reduced to 75%. Assumed that area is 5 % pervious. Curve number reduced to 96.6.

Initial Abstraction and Tp Calculations

nitial Abstra	action					Composite	Runoff C	oefficient	t		
14 (mm)	Area	A * I A		В		0	E	3D			
IA (IIIII)	(ha)	A IA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
	0	0	0.90	2.84	0.90	0.00		0.00			2.556
	0	0									0
1 57	0	0									0
1.57	0	0									0
	0.00	0									0.00
	2.84	4.4588									0
	2.84	1.57	Compos	site Runoff	Coefficien	t					0.9
*Township	of South	n Stormont	recomm	ends IA of	1.57 for p	ervious are	as.				
Tim	e to Pea	k Inputs				Uplands		Brar	nsby	Airp	ort
Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
	nitial Abstra IA (mm) 1.57 *Township Tim Length (m)	nitial Abstraction IA (mm) Area (ha) 0 0 1.57 0 0.00 2.84 2.84 *Township of South Time to Pea Length Drop (m) (m)	Area Area IA (mm) Area A * IA 0 0 0 1.57 0 0 0.00 0 0 2.84 4.4588 2.84 2.84 1.57 1.57 *Township of South Stormont Time to Peak Inputs Length Drop Slope (m) (m) (%)	Area (ha) A * IA (ha) RC 0 0 0.90 1.57 0 0 0.00 0 0 1.57 0 0 0.00 0 0 2.84 4.4588 0 2.84 1.57 Composition *Township of South Stormont recomm Time to Peak Inputs V/S ^{0.5} (m) (m) (%) V/S ^{0.5}	Area (ha) A * IA (ha) B IA (mm) A (ha) A * IA RC Area 0 0 0.90 2.84 0 0 0 0.90 2.84 1.57 0 0 0 0 0.90 2.84 1.57 0 <td>Area (ha) A * IA (ha) B 0 0 0.90 2.84 0.90 1.57 0 0 0 0.90 2.84 0.90 1.57 0 0 0 0.90 2.84 0.90 1.57 0 0 0 0 0.90 2.84 0.90 2.84 4.4588 2.84 1.57 Composite Runoff Coefficien *Township of South Stormont recommends IA of 1.57 for pr Time to Peak Inputs Tc (hr) Length Drop Slope V/S^{0.5} Velocity (m/s) Tc (hr)</td> <td>Area IA (mm) Area (ha) A * IA B 0 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0 0 0.90 2.84 0.90 0.00 2.84 4.4588 2.84 1.57 Composite Runoff Coefficient 1.57 for pervious are *Township of South Stormont recommends IA of 1.57 for pervious are Uplands Uplands Length Drop Slope V/S^{0.5} Velocity (m/s) Tc (hr) Tp(hr)</td> <td>Area IA (mm) Area (ha) A * IA A * IA B O E 0 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0 0 0 0 0 1.57 0<</td> <td>Initial Abstraction Composite Runoff Coefficient IA (mm) Area (ha) A * IA (ha) B 0 BD IA (mm) A * IA (ha) A * IA (ha) RC Area RC Area RC Area 0 0 0.90 2.84 0.90 0.00 0.00 0.00 1.57 0 0 0 0 0.00</td> <td>$\begin{array}{c c c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	Area (ha) A * IA (ha) B 0 0 0.90 2.84 0.90 1.57 0 0 0 0.90 2.84 0.90 1.57 0 0 0 0.90 2.84 0.90 1.57 0 0 0 0 0.90 2.84 0.90 2.84 4.4588 2.84 1.57 Composite Runoff Coefficien *Township of South Stormont recommends IA of 1.57 for pr Time to Peak Inputs Tc (hr) Length Drop Slope V/S ^{0.5} Velocity (m/s) Tc (hr)	Area IA (mm) Area (ha) A * IA B 0 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0 0 0.90 2.84 0.90 0.00 2.84 4.4588 2.84 1.57 Composite Runoff Coefficient 1.57 for pervious are *Township of South Stormont recommends IA of 1.57 for pervious are Uplands Uplands Length Drop Slope V/S ^{0.5} Velocity (m/s) Tc (hr) Tp(hr)	Area IA (mm) Area (ha) A * IA A * IA B O E 0 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0 0.90 2.84 0.90 0.00 1.57 0 0 0 0 0 0 0 1.57 0<	Initial Abstraction Composite Runoff Coefficient IA (mm) Area (ha) A * IA (ha) B 0 BD IA (mm) A * IA (ha) A * IA (ha) RC Area RC Area RC Area 0 0 0.90 2.84 0.90 0.00 0.00 0.00 1.57 0 0 0 0 0.00	$\begin{array}{c c c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Description		(11/3)					
NA	NA		NA	NA	NA	NA	NA
	Appropriate calculated time to peak:	NA	Appropriate Method:	Brar	nsby		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. NAME	110F
D.A. AREA (ha)	1.25

Hydrologic Parameters: CALIB STANHYD Command Post Development Drainage Area: Catchment 110F

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
В	-	В	100%	1.25
				0.00
				0.00
Total Area				1 25

Impervious La	anduses Pre	sent:										
	Roadway Sidewalk Driveway Area (ha) CN Area (ha) CN Area (ha) CN A 98 0 98 1.25 98		Buildir	ng	SW	MF	Subto	otals				
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B		98	0	98	1.25	98	0.0	98	0	98	1.25	122.5
-		98	0	98	0.00	98	0.0	98	0	98	0	0
-		98	0	98	0.00	98	0.0	98	0	98	0	0
Subtotal Area					1.25							
Pervious Land	duses Prese	nt:										
	Woodl	and	Mead	ow	Wetla	Ind	Lawr	1	Cultiv	rated	Subto	otals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	CN	Area	A*CN
B											0	0
-											0	0
Subtotal Area												
							Total Pervio	us Area			0.00	
				C	Composite Ar	ea	Total Imperv	ious Ar	ea		1.25	
					Calculations	6	% Imperviou	IS			100.00%	*75%
							Composite (Curve N	umber		98.0	*96.6
							Total Area C	Check			1.25	

*Note: Assumed that area is compacted gravel. Percent imperviousness reduced to 75%. Assumed that area is 5 % pervious. Curve number reduced to 96.6.

Initial Abstraction and Tp Calculations

	<u>nitial Abstra</u>	action				(Composite /	<u>Runoff Cr</u>	oefficient			
Londuco		Area	A * 1A		В		0	E	3D			
Lanuuse	IA (IIIII)	(ha)	АІА	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland		0	0	0.90	1.25	0.90	0.00		0.00			1.125
Meadow		0	0									0
Wetland	1 57	0	0									0
Lawn	1.57	0	0									0
Cultivated		0.00	0									0.00
Impervious		1.25	1.9625									0
Composite IA		1.25	1.57	Compos	site Runoff	Coefficien	t					0.9
	*Township	of South	1 Stormont	recomm	iends IA of	1.57 for p	ervious are	as.				
	Tim	ie to Pea	k Inputs				Uplands		Brar	isby	Airr	ort
Flow Path	Length	Drop	Slope	V/S ^{0.5}	Velocity	Tc (hr)	Tp(hr)	TOTAL	Tc (hr)	Tp(hr)	Tc (hr)	Tn(hr)
Description	(m)	(m)	(%)	v/3	(m/s)	10 (11)	1 P(11)	Tp (hr)	10 (11)	·P(···)	10 (11)	·P(···)

Description	(m)	(m)	(%)	V/S ^{0.5}	(m/s)	Tc (hr)	Tp(hr)	Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
NA			NA				NA		NA	NA	NA	NA
	Appropriate	e calculat	ed time to	peak:	NA	Appropriat	e Method:		Brar	isby		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)
 As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc

calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

APPENDIX D

Visual Otthymo Model Schematics

Figure 1: VO6 Schematic of Subject Property and External Drainage

Figure 2: VO6 Schematic of Phase A Existing Conditions

Figure 3: VO6 Schematic of Phase A Proposed Conditions

APPENDIX E

Visual Otthymo Output

E1 – Pre-development Visual Otthymo Output E2 – Post-Development Visual Otthymo Output

Phase A Pre-Development Stormwater Management Schematic 1909-5629

_____ SSSSS U V (v 6.1.2003) V Ι U А L V Ι U ΑΑ V SS U L V V Ι SS U U AAAAA L v V Ι SS U U Α А L Ι SSSSS UUUUU VV А А LLLLL 000 TTTTT TTTTT 000 ΤМ н н Υ Υ Μ Μ Т Т Н Н ΥY MM MM 0 0 0 0 Т Т Н Н Μ 0 0 Υ Μ 0 0 000 Т Т Н Н Υ Μ Μ 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. * * * * * 0 U T P U T ***** DETAILED filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\V02\voin.dat Input Output filename: C:\Users\agiampuzzi\AppData\Local\Civica\VH5\94083ae8-c3cd-4c22-9e28-a8fff57a7688\5e654f1a-8026-46d6-85cb-6f1da27b8dac\s Summary filename: C:\Users\aqiampuzzi\AppData\Local\Civica\VH5\94083ae8-c3cd-4c22-9e28-a8fff57a7688\5e654f1a-8026-46d6-85cb-6f1da27b8dac\s DATE: 10-26-2021 TIME: 02:23:18 USER: COMMENTS: _____ ** SIMULATION : 01-AES-5yr * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Filename: C:\Users\agiampuzzi\AppD READ STORM ata\Local\Temp\ 2a3110f8-b273-41dc-9c50-b7d9977438be\c11a765b | Ptotal= 56.82 mm | Comments: 5 Year RAIN |' TIME RAIN | TIME TIME RAIN | TIME RAIN mm/hr |' hrs mm/hr | hrs hrs mm/hr | hrs mm/hr 1.00 0.00 | 5.00 7.80 I 9.00 0.57 | 13.00 0.00 2.00 8.55 | 6.00 6.84 | 10.00 0.00 | 3.00 14.25 | 7.00 4.56 | 11.00 0.00 | 4.00 12.54 | 8.00 1.71 | 12.00 0.00 |

| CALIB | | NASHYD (0102)| Area (ha)= 2.25 Curve Number (CN)= 52.9 |ID= 1 DT= 5.0 min | (mm)= 4.67 # of Linear Res.(N)= 3.00 Ia U.H. Tp(hrs)= 0.77

> NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

 TRANS	FORME	D HY	′ET0GRAPH	

		110					
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54	6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54	6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54	6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167	14.25	5.417	6.84	8.667	0.57	11.92	0.00
2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333	14.25	5.583	6.84	8.833	0.57	12.08	0.00
2.417	14.25	5.667	6.84	8.917	0.57	12.17	0.00
2.500	14.25	5.750	6.84	9.000	0.57	12.25	0.00
2.583	14.25	5.833	6.84	9.083	0.00	12.33	0.00
2.667	14.25	5.917	6.84	9.167	0.00	12.42	0.00
2.750	14.25	6.000	6.84	9.250	0.00	12.50	0.00
2.833	14.25	6.083	4.56	9.333	0.00	12.58	0.00
2.917	14.25	6.167	4.56	9.417	0.00	12.67	0.00
3.000	14.25	6.250	4.56	9.500	0.00	12.75	0.00
3.083	12.54	6.333	4.56	9.583	0.00	12.83	0.00
3.167	12.54	6.417	4.56	9.667	0.00	12.92	0.00
3.250	12.54	6.500	4.56	9.750	0.00	13.00	0.00

Unit Hyd Qpeak	(cms)=	0.112
PEAK FLOW	(cms)=	0.013 (i)
TIME TO PEAK	(hrs)=	4.917
RUNOFF VOLUME	(mm)=	9.771
TOTAL RAINFALL	(mm)=	56.820

RUNOFF COEFFICIENT = 0.172

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | CALIB | | VASHVD (0105) | Area (ba) = 4.53 Curve Number (CN) = 59.5

NASHYD (0105)	Area	(na)=	4.53	Curve Number	(CN) = 59.5
ID= 1 DT= 5	.0 min	Ia	(mm)=	4.67	<pre># of Linear Res</pre>	s.(N)= 3.00
		U.H.	Tp(hrs)=	0.57		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORMED	HYETOGRA	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54	6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54	6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54	6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167	14.25	5.417	6.84	8.667	0.57	11.92	0.00
2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333	14.25	5.583	6.84	8.833	0.57	12.08	0.00
2.417	14.25	5.667	6.84	8.917	0.57	12.17	0.00
2.500	14.25	5.750	6.84	9.000	0.57	12.25	0.00
2.583	14.25	5.833	6.84	9.083	0.00	12.33	0.00
2.667	14.25	5.917	6.84	9.167	0.00	12.42	0.00
2.750	14.25	6.000	6.84	9.250	0.00	12.50	0.00
2.833	14.25	6.083	4.56	9.333	0.00	12.58	0.00
2.917	14.25	6.167	4.56	9.417	0.00	12.67	0.00
3.000	14.25	6.250	4.56	9.500	0.00	12.75	0.00
3.083	12.54	6.333	4.56	9.583	0.00	12.83	0.00
3.167	12.54	6.417	4.56	9.667	0.00	12.92	0.00
3.250	12.54	6.500	4.56	9.750	0.00	13.00	0.00

Unit Hyd Qpeak (cms)= 0.304

PEAK FLOW (cms)= 0.034 (i) TIME TO PEAK (hrs)= 4.333 RUNOFF VOLUME (mm)= 12.084 TOTAL RAINFALL (mm)= 56.820 RUNOFF COEFFICIENT = 0.213

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | NASHYD (0011)| Area (ha)= 3.10 Curve Number (CN)= 55.1 |ID= 1 DT= 5.0 min | Ia (mm)= 4.67 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= 0.57

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	'hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54	6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54	6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54	6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167	14.25	5.417	6.84	8.667	0.57	11.92	0.00
2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333	14.25	5.583	6.84	8.833	0.57	12.08	0.00
2.417	14.25	5.667	6.84	8.917	0.57	12.17	0.00
2.500	14.25	5.750	6.84	9.000	0.57	12.25	0.00
2.583	14.25	5.833	6.84	9.083	0.00	12.33	0.00
2.667	14.25	5.917	6.84	9.167	0.00	12.42	0.00
2.750	14.25	6.000	6.84	9.250	0.00	12.50	0.00
2.833	14.25	6.083	4.56	9.333	0.00	12.58	0.00
2.917	14.25	6.167	4.56	9.417	0.00	12.67	0.00
3.000	14.25	6.250	4.56	9.500	0.00	12.75	0.00
3.083	12.54	6.333	4.56	9.583	0.00	12.83	0.00
3.167	12.54	6.417	4.56	9.667	0.00	12.92	0.00

0.00

3.250 12.54 | 6.500 4.56 | 9.750 0.00 | 13.00 0.00 Unit Hyd Qpeak (cms)= 0.208 (cms)= 0.020 (i) PEAK FLOW TIME TO PEAK (hrs)= 4.333 RUNOFF VOLUME (mm)= 10.495 TOTAL RAINFALL (mm)= 56.820 RUNOFF COEFFICIENT = 0.185 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ ADD HYD (0001)

 + 2 = 3
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 1
 (0102):
 2.25
 0.013
 4.92
 9.77

 + ID2= 2
 (0105):
 4.53
 0.034
 4.33
 12.08

 | 1 + 2 = 3 | _____ ID = 3 (0001): 6.78 0.047 4.42 11.32 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0001)| | 3 + 2 = 1 |

 + 2 = 1
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 3
 0001):
 6.78
 0.047
 4.42
 11.32

 + ID2= 2
 (0011):
 3.10
 0.020
 4.33
 10.49

 -----_____ ID = 1 (0001): 9.88 0.067 4.42 11.06 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ | CALIB Т NASHYD (0106) Area (ha)= 4.50 Curve Number (CN)= 60.0 Ia (mm)= 4.67 # of Linear Res.(N)= 3.00 |ID= 1 DT= 5.0 min | ----- U.H. Tp(hrs) = 0.48 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | ' TIME RAIN | TIME TIME RAIN
 hrs
 mm/hr
 hrs
 mm/hr
 l
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 l
 hrs</thr</thr</th>
 l
 l</thr</th>
 0.250 0.00 | 3.500 12.54 | 6.750 4.56 | 10.00 0.00

0.333 0.00 | 3.583 12.54 | 6.833 4.56 | 10.08 0.00

 0.417
 0.00
 3.007
 12.34
 0.917
 4.30
 10.17
 0.00

 0.500
 0.00
 3.750
 12.54
 7.000
 4.56
 10.25
 0.00

 0.583
 0.00
 3.833
 12.54
 7.083
 1.71
 10.33
 0.00

 0.667
 0.00
 3.917
 12.54
 7.167
 1.71
 10.42
 0.00

 0.750
 0.00
 4.000
 12.54
 7.250
 1.71
 10.50
 0.00

0.833 0.00 | 4.083 7.80 | 7.333 1.71 | 10.58 0.00

0.417 0.00 | 3.667 12.54 | 6.917 4.56 | 10.17

0 917	0 00 1	4 167	7 80	7 417	1 71	10 67	0 00
1 000		1 250	7 80		1 71	10.75	0.00
1 092	9 55 1	4.222	7 90		1 71	10.75	0.00
1 167	0.55	4.333	7 00		1 71	10.03	0.00
1.107	0.55	4.417	7.00			10.92	0.00
1.250	8.55	4.500	7.80			11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1./1	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1./1	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167	14.25	5.417	6.84	8.667	0.57	11.92	0.00
2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333	14.25 İ	5.583	6.84	8.833	0.57 İ	12.08	0.00
2.417	14.25 İ	5,667	6.84	8.917	0.57 İ	12.17	0.00
2.500	14.25	5.750	6.84	9.000	0.57	12.25	0.00
2.583	14.25	5.833	6.84	9.083	0.00	12.33	0.00
2 667	14 25 1	5 917	6 84	9 167	0 00 1	12 42	0 00
2 750	14 25 1	6 000	6 84	9 250	0 00 1	12 50	0 00
2 833	1/ 25	6 083	1 56	0 333	0.00	12.58	0.00
2.000	1/ 25	6 167	4.50	0 /17		12.50	0.00
2.017	14 25	6 250	4.50			12.07	0.00
2 002	12 54	6 222	4.50			12.75	0.00
2 167	12.54	6 417	4.50	9.505		12.03	0.00
3.107	12.54	0.417	4.50			12.92	0.00
3.250	12.54	0.500	4.50	9.750	0.00	13.00	0.00
Unit Hyd Opeak (cr	nc)- 0	358					
UNITE NYU QPEAK (CI	15)- 0	1.330					
	ns)- 0	036 (i)					
TIME TO DEAK (b)	(13) = 0 (13) = 1	250					
	3) = 4	.230					
RUNOFF VOLUME (I	((((((((((((((((((((((((((((((((((((
TUTAL RAINFALL (I	nin)= 56	0.820					
RUNUFF CUEFFICIENT	= 0	0.216					
(I) PEAK FLUW DUES	NUT INC	LUDE BASE	FLOW IN	- ANY.			
NASHYD (0107) /	Area	(ha) = 3	s.94 (Curve Numb	per (C	(N)= 60 0	
TD = 1 DT = 5.0 min	с Га	(mm) = 4	1.67 ±	f of lines	r Res ((N) = 3.00	
1	-∽ J.H. Tn(hrs) = 0).42			, 0100	
· · · · · · · · · · · · · · · · · · ·	···· · P(· · · -				

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMED HYETOG	RAPH	-	
TIME	RAIN	TIME	RAIN ' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr ' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54 6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54 6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54 6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54 6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54 6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54 7.000	4.56	10.25	0.00

0.583 0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667 0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750 0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833 0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917 0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000 0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083 8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167 8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250 8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333 8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417 8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500 8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583 8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667 8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750 8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833 8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917 8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000 8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083 14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167 14.25	5.417	6.84	8.667	0.57	11.92	0.00
2.250 14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333 14.25	5.583	6.84	8.833	0.57	12.08	0.00
2.417 14.25	5.667	6.84	8.917	0.57	12.17	0.00
2.500 14.25	5.750	6.84		0.57	12.25	0.00
2.583 14.25		6.84	9.083	0.00	12.33	0.00
2.007 14.25	5.917	0.84	9.167	0.00	12.42	0.00
2.750 14.25		0.84	9.250	0.00	12.50	0.00
2.033 14.23		4.50	9.333	0.00	12.30 12.67	0.00
2.917 14.25		4.50	9.417	0.00	1 12.07	0.00
2 082 12 54	0.230	4.50	0 583	0.00	12.73	0.00
3 167 12 54		4.50	9.505	0.00	12.03	0.00
3.250 12.54	6.500	4.56	9.750	0.00	13.00	0.00
	1 0.000		1 01100			
Unit Hyd Qpeak (cms)=	0.358					
PEAK FLOW (cms)=	0.032 (i)				
TIME TO PEAK (hrs)=	4.167	•				
RUNOFF VOLUME (mm)=	12.278					
TOTAL RAINFALL (mm)=	56.820					
RUNOFF COEFFICIENT =	0.216					
(i) PEAK FLOW DOES NOT T	NCLUDE BAS	SEELOW T	F ANY.			

| CALIB | (ha)= (mm) NASHYD (0012) Curve Number (CN)= 60.0 Area 2.19 # of Linear Res.(N) = 3.00 |ID= 1 DT= 5.0 min | 4.67 Ia U.H. Tp(hrs)= 0.45

> NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN ⁻	TIME RAIN	' TIME	RAIN	TIME	RAIN		
hrs	mm/hr	hrs mm/hr	' ' hrs	mm∕hr	hrs	mm/hr		
0.083	0.00 3	.333 12.54	6.583	4.56	9.83	0.00		
0.167	0.00 3	.417 12.54	6.667	4.56	9.92	0.00		
0.250 0.00 0.333 0.00 0.417 0.00 0.500 0.00 0.583 0.00 0.667 0.00 0.750 0.00 0.833 0.00 0.917 0.00 1.000 0.00 1.083 8.55 1.250 8.55 1.250 8.55 1.333 8.55 1.417 8.55 1.500 8.55 1.583 8.55 1.667 8.55 1.750 8.55 1.833 8.55 1.917 8.55 2.000 8.55 2.083 14.25 2.167 14.25 2.250 14.25 2.333 14.25 2.417 14.25 2.583 14.25 2.583 14.25 2.583 14.25 2.583 14.25 2.583 14.25 2.583 14.25 2.583 14.25 2.583 14.25 2.583 14.25 2.583 14.25 2.583 14.25 3.000 14.25 3.000 14.25 3.000 14.25 3.083 12.54 3.167 12.54 3.250 12.54 Unit Hyd Qpeak (cms)= 0 PEAK FLOW (cms)= 0 TIME TO PEAK (hrs)= 4 RUNOFF VOLUME (mm)= 13 TOTAL RAINFALL (mm)= 50 RUNOFF COEFFICIENT = 0	$ \begin{vmatrix} 3.500 & 12.5 \\ 3.583 & 12.5 \\ 3.667 & 12.5 \\ 3.750 & 12.5 \\ 3.833 & 12.5 \\ 3.917 & 12.5 \\ 4.000 & 12.5 \\ 4.083 & 7.8 \\ 4.167 & 7.8 \\ 4.250 & 7.8 \\ 4.250 & 7.8 \\ 4.250 & 7.8 \\ 4.333 & 7.8 \\ 4.417 & 7.8 \\ 4.583 & 7.8 \\ 4.417 & 7.8 \\ 4.583 & 7.8 \\ 4.4583 & 7.8 \\ 4.667 & 7.8 \\ 4.583 & 7.8 \\ 4.667 & 7.8 \\ 4.583 & 7.8 \\ 4.667 & 7.8 \\ 4.583 & 7.8 \\ 5.000 & 7.8 \\ 5.000 & 7.8 \\ 5.083 & 6.8 \\ 5.167 & 6.8 \\ 5.250 & 6.8 \\ 5.333 & 6.8 \\ 5.553 & 6.8 \\ 5.553 & 6.8 \\ 5.5667 & 6.8 \\ 5.5500 & 6.8 \\ 5.5667 & 6.8 \\ 5.5667 & 6.8 \\ 5.560 & 6.8 \\ 5.560 & 6.8 \\ 5.5750 & 6.8 \\ 5.5750 & 6.8 \\ 5.5750 & 6.8 \\ 5.667 & 6.8 \\ 5.583 & 6.8 \\ 5.917 & 6.8 \\ 5.917 & 6.8 \\ 5.917 & 6.8 \\ 5.917 & 6.8 \\ 6.000 & 6.8 \\ 6.083 & 4.5 \\ 6.167 & 4.5 \\ 6.250 & 4.5 \\ 6.333 & 4.5 \\ 6.417 & 4.5 \\ 0.186 \\ 0.018 & (1) \\ 4.167 \\ 2.278 \\ 6.820 \\ 0.216 \\ \end{vmatrix} $	<pre>4 6.750 4 6.833 4 6.917 4 7.000 4 7.083 4 7.167 4 7.250 0 7.333 0 7.417 0 7.583 0 7.667 0 7.583 0 7.667 0 7.750 0 7.833 0 7.917 0 8.000 0 8.083 0 8.167 0 8.250 4 8.333 4 8.417 4 8.583 4 8.583 4 8.667 4 8.750 4 8.750 4 8.917 4 9.000 4 9.083 4 9.167 4 9.250 6 9.333 6 9.417 6 9.583 6 9.667 6 9.750</pre>	$\begin{array}{c} 4.56\\ 4.56\\ 4.56\\ 4.56\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 0.57\\ 0.59\\$	10.00 10.08 10.17 10.25 10.33 10.42 10.50 10.58 10.75 10.83 10.92 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75 11.83 11.92 12.00 12.08 12.17 12.25 12.33 12.42 12.50 12.58 12.75 12.75 12.83 12.92 13.00	0.00 0.00			
---	---	--	--	--	--			
(i) PEAK FLOW DOES NOT IN	CLUDE BASEFLOW	IF ANY.						
ADD HYD (0002) 1 + 2 = 3 Al ID1= 1 (0106): 4 + ID2= 2 (0107): 3 ====================================	REA QPEAK ha) (cms) .50 0.036 .94 0.032 ====================================	TPEAK (hrs) 4.25 4.17 ====================================	R.V. (mm) 12.28 12.28 ====== 12.28					

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0002)| 3 + 2 = 1 | AREA QPEAK TPEAK R.V. ID1= 3 (0002): 8.44 0.068 4.17 12.28 + ID2= 2 (0012): 2.19 0.018 4.17 12.28 ID = 1 (0002): 10.63 0.086 4.17 12.28 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. CALIB | NASHYD (0009)| Area (ha)= 2.69 Curve Number (CN)= 55.9 ID= 1 DT= 5.0 min | Ia (mm)= 4.67 # of Linear Res.(N)= 3.00 ----- TRANSFORMED TO 5.0 MIN. TIME STEP. NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN |

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54	6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54	6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54	6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167	14.25	5.417	6.84	8.667	0.57	11.92	0.00
2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333	14.25	5.583	6.84	8.833	0.57	12.08	0.00
2.417	14.25	5.667	6.84	8.917	0.57	12.17	0.00
2.500	14.25	5.750	6.84	9.000	0.57	12.25	0.00
2.583	14.25	5.833	6.84	9.083	0.00	12.33	0.00
2.667	14.25	5.917	6.84	9.167	0.00	12.42	0.00
2.750	14.25	6.000	6.84	9.250	0.00	12.50	0.00

2.833 2.917 3.000 3.083 3.167 3.250	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 4.56 & & 9.333 \\ 4.56 & & 9.417 \\ 4.56 & & 9.500 \\ 4.56 & & 9.583 \\ 4.56 & & 9.667 \\ 4.56 & & 9.750 \end{array}$	0.00 12.58 0.00 12.67 0.00 12.75 0.00 12.83 0.00 12.92 0.00 12.92 0.00 13.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unit Hyd Qpeak (d PEAK FLOW (d TIME TO PEAK (h RUNOFF VOLUME (TOTAL RAINFALL (RUNOFF COEFFICIENT	cms)= 0.278 cms)= 0.020 (i) ors)= 4.083 mm)= 10.767 mm)= 56.820 = 0.189			
(i) PEAK FLOW DOES	S NOT INCLUDE BASI	EFLOW IF ANY.		

______ SSSSS U V (v 6.1.2003) V Ι U А L V Ι U ΑΑ V SS U L V V Ι SS U U AAAAA L V V Ι SS U U Α А L Ι SSSSS UUUUU VV А А LLLLL 000 TTTTT TTTTT 000 ΤМ н н Υ Υ Μ Μ Т Н Н ΥY MM MM 0 0 0 Т 0 Т Т Н Н Μ 0 0 Υ Μ 0 0 000 Т Т Н Н Υ Μ Μ 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. * * * * * 0 U T P U T ***** DETAILED filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\V02\voin.dat Input Output filename: C:\Users\agiampuzzi\AppData\Local\Civica\VH5\94083ae8-c3cd-4c22-9e28-a8fff57a7688\03840c27-690d-42c1-b6ce-89ac84adf415\s Summary filename: C:\Users\aqiampuzzi\AppData\Local\Civica\VH5\94083ae8-c3cd-4c22-9e28-a8fff57a7688\03840c27-690d-42c1-b6ce-89ac84adf415\s DATE: 10-20-2021 TIME: 12:25:39 USER: COMMENTS: _____ ** SIMULATION : 02-AES-100yr * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Filename: C:\Users\agiampuzzi\AppD READ STORM ata\Local\Temp\ 53c8c437-0cd4-4ad4-8de7-8eaea93c3e33\a509c388 Ptotal=101.80 mm | Comments: 100 Year RAIN |' TIME RAIN | TIME TIME RAIN | TIME RAIN mm/hr |' hrs mm/hr | hrs hrs mm/hr | hrs mm/hr 1.00 0.00 | 5.00 14.25 9.00 1.02 | 13.00 0.00 2.00 15.27 | 6.00 12.22 | 10.00 0.00 | 3.00 25.45 7.00 8.14 | 11.00 0.00 | 4.00 22.40 | 8.00 3.05 | 12.00 0.00 |

| CALIB | | NASHYD (0102)| Area (ha)= 2.25 Curve Number (CN)= 52.9 |ID= 1 DT= 5.0 min | Ia (mm)= 4.67 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.77

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANS	SFORME	D HY	′ET0GRAPH	
•					

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	22.40	6.583	8.14	9.83	0.00
0.167	0.00	3.417	22.40	6.667	8.14	9.92	0.00
0.250	0.00	3.500	22.40	6.750	8.14	10.00	0.00
0.333	0.00	3.583	22.40	6.833	8.14	10.08	0.00
0.417	0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500	0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00	12.75	0.00
3.083	22.40	6.333	8.14	9.583	0.00	12.83	0.00
3.167	22.40	6.417	8.14	9.667	0.00	12.92	0.00
3.250	22.40	6.500	8.14	9.750	0.00	13.00	0.00

Unit Hyd Qpeak	(cms)=	0.112	
PEAK FLOW	(cms)=	0.039	(i)
TIME TO PEAK	(hrs)=	4.667	
RUNOFF VOLUME	(mm)=	29.182	
TOTAL RATNEALL	(mm)=	101.800	

RUNOFF COEFFICIENT = 0.287

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

NASHYD (0105)	Area	(ha)=	4.53	Curve Number	(CN)=	59.5
ID= 1 DT= 5.0 min	Ia	(mm)=	4.67	# of Linear R	es.(N)=	3.00
	U.H.	Tp(hrs)=	0.57			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME) HYETOGRA	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	22.40	6.583	8.14	9.83	0.00
0.167	0.00	3.417	22.40	6.667	8.14	9.92	0.00
0.250	0.00	3.500	22.40	6.750	8.14	10.00	0.00
0.333	0.00	3.583	22.40	6.833	8.14	10.08	0.00
0.417	0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500	0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05 j	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05 j	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05 j	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05 I	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02 j	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02 j	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02 j	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02 j	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02 j	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02 j	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00 İ	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00 İ	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00 İ	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00 İ	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00 İ	12.75	0.00
3.083	22.40	6.333	8.14	9.583	0.00 I	12.83	0.00
3.167	22.40	6.417	8.14	9.667	0.00	12.92	0.00
3.250	22.40	6.500	8.14	9.750	0.00	13.00	0.00
		-		•			

Unit Hyd Qpeak (cms)= 0.304

PEAK FLOW (cms)= 0.101 (i) TIME TO PEAK (hrs)= 4.250 RUNOFF VOLUME (mm)= 34.938 TOTAL RAINFALL (mm)= 101.800 RUNOFF COEFFICIENT = 0.343

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | NASHYD (0011)| Area (ha)= 3.10 Curve Number (CN)= 55.1 |ID= 1 DT= 5.0 min | Ia (mm)= 4.67 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= 0.57

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	22.40	6.583	8.14	9.83	0.00
0.167	0.00	3.417	22.40	6.667	8.14	9.92	0.00
0.250	0.00	3.500	22.40	6.750	8.14	10.00	0.00
0.333	0.00	3.583	22.40	6.833	8.14	10.08	0.00
0.417	0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500	0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00	12.75	0.00
3.083	22.40	6.333	8.14	9.583	0.00	12.83	0.00
3.167	22.40	6.417	8.14	9.667	0.00	12.92	0.00

3.250 22.40 | 6.500 8.14 | 9.750 0.00 | 13.00 0.00 Unit Hyd Qpeak (cms)= 0.208 (cms)= 0.061 (i) PEAK FLOW TIME TO PEAK (hrs)= 4.250 RUNOFF VOLUME (mm)= 31.021 TOTAL RAINFALL (mm)= 101.800 TIME TO PEAK RUNOFF COEFFICIENT = 0.305 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ ADD HYD (0001)

 + 2 = 3
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 1
 (0102):
 2.25
 0.039
 4.67
 29.18

 + ID2= 2
 (0105):
 4.53
 0.101
 4.25
 34.94

 | 1 + 2 = 3 | _____ ID = 3 (0001): 6.78 0.139 4.33 33.03 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0001)| | 3 + 2 = 1 |

 + 2 = 1
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 3
 0001):
 6.78
 0.139
 4.33
 33.03

 + ID2= 2
 (0011):
 3.10
 0.061
 4.25
 31.02

 -----_____ ID = 1 (0001): 9.88 0.200 4.33 32.40 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ | CALIB Т NASHYD (0106) Area (ha)= 4.50 Curve Number (CN)= 60.0 Ia (mm)= 4.67 # of Linear Res.(N)= 3.00 |ID= 1 DT= 5.0 min | ----- U.H. Tp(hrs) = 0.48 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN |' TIME RAIN | TIME TIME RAIN
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr</thr</thr</th>
 hrs
 hrs
 0.250 0.00 | 3.500 22.40 | 6.750 8.14 | 10.00 0.00

0.917	7 0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	3 15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	7 15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	9 15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	3 15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	7 15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	9 15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	3 15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	7 15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	9 15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	3 15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	7 15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	9 15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	3 25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	7 25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	9 25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	3 25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	7 25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	9 25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	3 25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	7 25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	9 25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	3 25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	7 25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	9 25.45	6.250	8.14	9.500	0.00	12.75	0.00
3.083	3 22.40	6.333	8.14	9.583	0.00	12.83	0.00
3.167	7 22.40	6.417	8.14	9.667	0.00	12.92	0.00
3.250	0 22.40	6.500	8.14	9.750	0.00	13.00	0.00
Unit Hyd Qpeak	(cms)=	0.358					

PEAK FLOW (cms)= 0.106 (i) TIME TO PEAK (hrs)= 4.167 RUNOFF VOLUME (mm)= 35.403 TOTAL RAINFALL (mm)= 101.800 RUNOFF COEFFICIENT = 0.348

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

_____ -----| CALIB | NASHYD (0107)| Area (ha)= 3.94 Curve Number (CN)= 60.0 # of Linear Res.(N)= 3.00 |ID= 1 DT= 5.0 min | (mm)= 4.67 Ia U.H. Tp(hrs) =-----0.42

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRAN	ISFORMED	HYETOGRAF	РН		
RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
0.00 3	3.333	22.40	6.583	8.14	9.83	0.00
0.00 3	8.417	22.40	6.667	8.14	9.92	0.00
0.00 3	8.500	22.40	6.750	8.14	10.00	0.00
0.00 3	8.583	22.40	6.833	8.14	10.08	0.00
0.00 3	8.667	22.40	6.917	8.14	10.17	0.00
0.00 3	8.750	22.40	7.000	8.14	10.25	0.00
	RAIN mm/hr 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3	TRAN RAIN TIME mm/hr hrs 0.00 3.333 0.00 3.417 0.00 3.500 0.00 3.583 0.00 3.667 0.00 3.750	TRANSFORMED RAIN TIME RAIN mm/hr hrs mm/hr 0.00 3.333 22.40 0.00 3.417 22.40 0.00 3.500 22.40 0.00 3.583 22.40 0.00 3.667 22.40 0.00 3.750 22.40	TRANSFORMED HYETOGRAF RAIN TIME RAIN ' TIME mm/hr hrs mm/hr ' hrs 0.00 3.333 22.40 6.583 0.00 3.417 22.40 6.667 0.00 3.500 22.40 6.750 0.00 3.583 22.40 6.833 0.00 3.667 22.40 6.917 0.00 3.750 22.40 7.000	RAIN TIME RAIN TIME RAIN RAIN mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.00 3.333 22.40 6.583 8.14 0.00 0.00 3.417 22.40 6.667 8.14 0.00 0.00 3.500 22.40 6.750 8.14 0.00 0.00 3.583 22.40 6.833 8.14 0.00 3.667 22.40 6.917 8.14 0.00 3.750 22.40 7.000 8.14 0.00 1.41 0.00 0.00 1.41 0.00 1.41 0.00 1.41 0.00 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1.41 0.00 1	RAIN TIME RAIN TIME RAIN TIME RAIN TIME mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr hrs 0.00 3.333 22.40 6.583 8.14 9.83 0.00 3.417 22.40 6.667 8.14 9.92 0.00 3.500 22.40 6.750 8.14 10.00 0.00 3.583 22.40 6.833 8.14 10.08 0.00 3.667 22.40 6.917 8.14 10.17 0.00 3.750 22.40 7.000 8.14 10.25

0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00	12.75	0.00
3.083	22.40	6.333	8.14	9.583	0.00	12.83	0.00
3.167	22.40	6.417	8.14	9.667	0.00	12.92	0.00
3.250	22.40	6.500	8.14	9.750	0.00	13.00	0.00
Unit Hyd Qpeak (d	cms)= 0	0.358					
PEAK FLOW (0	cms)= 0	0.094 (i))				
TIME TO PEAK (1	ırs)= ∠	1.167					
RUNOFF VOLUME	(mm)= 35	5.402					
TOTAL RAINFALL	(mm)= 101	L.800					

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RUNOFF COEFFICIENT = 0.348

| CALIB | | NASHYD (0012)| Area (ha)= 2.19 Curve Number (CN)= 60.0 |ID= 1 DT= 5.0 min | Ia (mm)= 4.67 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.45

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN '	TIME	RAIN	TIME	RAIN		
hrs	mm/hr	hrs	mm/hr '	hrs	mm/hr	hrs	mm/hr		
0.083	0.00	3.333	22.40 0	5.583	8.14	9.83	0.00		
0.167	0.00	3.417	22.40 6	6.667	8.14	9.92	0.00		

_

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 5.083 5.167 5.250 5.333 5.417 5.583 5.667 5.750	22.40 22.40 22.40 22.40 22.40 14.25 12.22 2	<pre>6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.417 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.583 8.667 8.750 8.833 8.917 9.000</pre>	8.14 8.14 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 1.02 $1.021.021.021.021.02$ 1.02 $1.$	$\begin{array}{c} 10.08\\ 10.17\\ 10.25\\ 10.33\\ 10.42\\ 10.50\\ 10.58\\ 10.67\\ 10.75\\ 10.83\\ 10.92\\ 11.00\\ 11.08\\ 11.17\\ 11.25\\ 11.33\\ 11.42\\ 11.50\\ 11.58\\ 11.67\\ 11.58\\ 11.67\\ 11.75\\ 11.83\\ 11.92\\ 12.00\\ 12.08\\ 12.17\\ 12.25\\ \end{array}$	0.00 0.00
2.583 25.45 2.667 25.45 2.750 25.45 2.833 25.45 2.917 25.45 3.000 25.45 3.083 22.40 3.167 22.40 3.250 22.40	5.833 5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500	12.22 12.22 12.22 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14	9.083 9.167 9.250 9.333 9.417 9.500 9.583 9.667 9.750	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	12.33 12.42 12.50 12.58 12.67 12.75 12.83 12.92 13.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Unit Hyd Qpeak (cms)= (PEAK FLOW (cms)= (TIME TO PEAK (hrs)= 4 RUNOFF VOLUME (mm)= 38 TOTAL RAINFALL (mm)= 103 RUNOFF COEFFICIENT = ((i) PEAK FLOW DOES NOT ING	9.186 9.052 (i) 4.167 5.402 1.800 9.348 CLUDE BAS	EFLOW I	F ANY.			
ADD HYD (0002) 1 + 2 = 3 AI ID1= 1 (0106): 4 + ID2= 2 (0107): 3	REA QF ha) (c .50 0.1 .94 0.0	PEAK ms) .06	TPEAK (hrs) 4.17 4.17	R.V. (mm) 35.40 35.40		

0.200

4.17

35.40

8.44

ID = 3 (0002):

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0002)| 3 + 2 = 1 | _____ ID = 1 (0002): 10.63 0.252 4.17 35.40 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | CALIB | | NASHYD (0009)| Area (ha)= 2.69 Curve Number (CN)= 55.9 |ID= 1 DT= 5.0 min | Ia (mm)= 4.67 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.37 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----

hrs i	mm/hr
9.83	0.00
9.92	0.00
10.00	0.00
10.08	0.00
10.17	0.00
10.25	0.00
10.33	0.00
10.42	0.00
10.50	0.00
10.58	0.00
10.67	0.00
10.75	0.00
10.83	0.00
10.92	0.00
11.00	0.00
11.08	0.00
11.17	0.00
11.25	0.00
11.33	0.00
11.42	0.00
11.50	0.00
11.58	0.00
11.67	0.00
11.75	0.00
11.83	0.00
11.92	0.00
12.00	0.00
12.08	0.00
12.17	0.00
12.25	0.00
12.33	0.00
12.42	0.00
12.50	0.00
	0.50 0.58 0.67 0.75 0.83 0.92 1.00 1.08 1.17 1.25 1.33 1.42 1.58 1.67 1.75 1.83 1.92 2.00 2.08 2.17 2.25 2.33 2.42 2.50

2.833 2.917 3.000 3.083 3.167 3.250	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 0.00 & & 12.58 \\ 0.00 & & 12.67 \\ 0.00 & & 12.75 \\ 0.00 & & 12.83 \\ 0.00 & & 12.92 \\ 0.00 & & 13.00 \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unit Hyd Qpeak (d PEAK FLOW (d TIME TO PEAK (h RUNOFF VOLUME (TOTAL RAINFALL (RUNOFF COEFFICIENT (i) PEAK FLOW DOES	cms)= 0.278 cms)= 0.058 (i) ors)= 4.083 mm)= 31.705 mm)= 101.800 = 0.311 S NOT INCLUDE BASE	EFLOW IF ANY.		

Phase A Post-Development Stormwater Management Schematic 1909-5629

_____ SSSSS U V (v 6.1.2003) V Ι U А L V Ι U ΑΑ V SS U L V V Ι SS U U AAAAA L V V Ι SS U U Α А L VV Ι SSSSS UUUUU А А LLLLL 000 TTTTT TTTTT 000 ΤМ н н Υ Υ Μ Μ 0 Т Т н Н ΥY MM MM 0 0 0 Т Т Н Н Μ 0 0 Υ Μ 0 0 000 Т Т Н Н Υ Μ Μ 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. * * * * * 0 U T P U T ***** DETAILED filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\V02\voin.dat Input Output filename: C:\Users\agiampuzzi\AppData\Local\Civica\VH5\94083ae8-c3cd-4c22-9e28-a8fff57a7688\75ddee84-4694-45bb-b054-a8b571e94e48\s Summary filename: C:\Users\aqiampuzzi\AppData\Local\Civica\VH5\94083ae8-c3cd-4c22-9e28-a8fff57a7688\75ddee84-4694-45bb-b054-a8b571e94e48\s DATE: 10-26-2021 TIME: 02:24:38 USER: COMMENTS: _____ ** SIMULATION : 01-AES-5yr * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Filename: C:\Users\agiampuzzi\AppD READ STORM ata\Local\Temp\ 7ac3cc91-ada5-4407-a88e-b2e97255f693\c11a765b | Ptotal= 56.82 mm | Comments: 5 Year RAIN |' TIME RAIN | TIME TIME RAIN | TIME RAIN mm/hr |' hrs mm/hr | hrs hrs mm/hr | hrs mm/hr 1.00 0.00 | 5.00 7.80 I 9.00 0.57 | 13.00 0.00 2.00 8.55 | 6.00 6.84 | 10.00 0.00 | 3.00 14.25 | 7.00 4.56 | 11.00 0.00 | 4.00 12.54 | 8.00 1.71 | 12.00 0.00 |

CALIB STANDHYD (0102) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	2.15 75.00	Dir. Conn.(%)=	75.00
		IMPERVIO	JUS	PERVIOUS (1)	
Surface Area	(ha)=	1.6	1	0.54	
Dep. Storage	(mm)=	1.00	9	1.57	
Average Slope	(%)=	0.50	9	0.50	
Length	(m)=	119.72	2	587.00	
Mannings n	=	0.01	3	0.050	

2.917

3.000

3.083

3.167

3.250

14.25

14.25

12.54

| 6.167

| 6.333

12.54 | 6.417

12.54 | 6.500

6.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGR	АРН		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54	6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54	6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54	6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167	14.25	5.417	6.84	8.667	0.57	11.92	0.00
2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333	14.25	5.583	6.84	8.833	0.57	12.08	0.00
2.417	14.25	5.667	6.84	8.917	0.57	12.17	0.00
2.500	14.25	5.750	6.84	9.000	0.57	12.25	0.00
2.583	14.25	5.833	6.84	9.083	0.00	12.33	0.00
2.667	14.25	5.917	6.84	9.167	0.00	12.42	0.00
2.750	14.25	6.000	6.84	9.250	0.00	12.50	0.00
2.833	14.25	6.083	4.56	9.333	0.00	12.58	0.00

4.56 | 9.417

4.56 | 9.500

4.56 | 9.583

4.56 | 9.667

4.56 | 9.750

0.00 |

0.00 | 12.83

0.00 | 12.92

0.00 | 13.00

0.00

12.67

12.75

0.00

0.00

0.00

0.00

0.00

Max.Eff.Inten.	(mm/hr)=	14.25	11.14	
ove	r (min)	10.00	60.00	
Storage Coeff.	(min)=	7.64 (ii)	56.74 (ii)	
Unit Hyd. Tpea	k (min)=	10.00	60.00	
Unit Hyd. peak	(cms)=	0.13	0.02	
				TOTALS
PEAK FLOW	(cms)=	0.06	0.01	0.071 (iii)
TIME TO PEAK	(hrs)=	3.00	4.50	3.00
RUNOFF VOLUME	(mm)=	55.82	43.94	52.84
TOTAL RAINFALL	(mm)=	56.82	56.82	56.82
RUNOFF COEFFIC	IENT =	0.98	0.77	0.93
(i) CN PROCE	DURE SELECT	ED FOR PERVIO	US LOSSES:	
CN* =	94.7 Ia	= Dep. Stora	ge (Above)	
(ii) TIME STE	P (DT) SHOU	LD BE SMALLER	OR EQUAL	
	OTODAOE OO			

THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0027) IN= 2> OUT= 1	0VERFL0	W IS ON			
DT= 5.0 min	OUTFLOW	I STORA	AGE	OUTFLOW	STORAGE
	(cms)	(ha.m	n.) İ	(cms)	(ha.m.)
	ò.00ó0	0.00	DOÓ Í	ò.0390	0.1600
	0.0130	0.10	000 j	0.0000	0.0000
		AREA	QPEAK	TPEAK	R.V.
		(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (0102)	2.150	0.071	3.00	52.84
OUTFLOW: ID= 1 (0027)	2.150	0.012	8.08	51.93
OVERFLOW:ID= 3 (0003)	0.000	0.000	0.00	0.00

TOTAL NUMBER OF SIMULATION OVERFLOW = 0 CUMULATIVE TIME OF OVERFLOW (HOURS) = 0.00 PERCENTAGE OF TIME OVERFLOWING (%) = 0.00

FLOW REDUCTION [Qout/Qin](%)= 16.78 PEAK TIME SHIFT OF PEAK FLOW (min)=305.00 MAXIMUM STORAGE USED (ha.m.)= 0.0917

_____ | CALIB | STANDHYD (0105)| Area (ha)= 5.37 |ID= 1 DT= 5.0 min | Total Imp(%)= 77.00 Dir. Conn.(%)= 77.00

	IMPERVIOUS	PERVIOUS (i)
(ha)=	4.13	1.24
(mm)=	1.00	1.57
(%)=	0.40	0.40
(m)=	189.21	604.00
=	0.013	0.050
	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS (ha)= 4.13 (mm)= 1.00 (%)= 0.40 (m)= 189.21 = 0.013

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000	RAIN mm/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 8.55 14.25 14.55 15.55 14.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15	TIME hrs 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.417 4.500 4.583 4.417 4.500 4.583 4.667 4.750 4.583 4.667 4.750 5.083 5.167 5.250 5.333 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.667 5.750 5.750 5.750 5.833 5.417	RAIN mm/hr 12.54 12.55 1	<pre> ' TIME ' hrs 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.417 8.500 8.583 8.417 8.500 8.583 8.417 8.500 8.583 8.417 8.500 8.583 8.417 9.000 9.083 9.167 9.250 9.333 9.417 9.500 9.583</pre>	RAIN mm/hr 4.56 4.56 4.56 4.56 4.56 4.56 1.71 0.57 0.57 0.57 0.57 0.57 0.57 0.50 0.50 0.00	TIME hrs 9.83 9.92 10.00 10.08 10.17 10.25 10.33 10.42 10.50 10.58 10.67 10.75 10.83 10.92 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.58 11.67 11.75 11.83 11.92 12.00 12.08 12.17 12.25 12.33 12.42 12.50 12.58 12.67 12.75 12.83	RAIN mm/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
3.083 3.167 3.250	12.54 12.54 12.54 12.54	6.333 6.417 6.500	4.56 4.56 4.56	9.583 9.667 9.750	0.00 0.00 0.00	12.73 12.83 12.92 13.00	0.00 0.00 0.00
Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (n/hr)= min) min)= min)= cms)=	14.25 10.00 10.75 10.00 0.11	(ii)	10.24 70.00 65.99 (ii) 70.00 0.02			
PEAK FLOW (TIME TO PEAK (RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	cms)= hrs)= (mm)= (mm)= IT =	0.16 3.00 55.82 56.82 0.98		0.03 4.75 40.41 56.82 0.71	* T01 0. 352 56	TALS* .174 (iii) 3.00 2.27 5.82 9.92	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 92.6$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

		-
RESERVOIR(0028) IN= 2> OUT= 1	OVERFLOW IS ON	
DT= 5.0 min	OUTFLOW STORAGE OUTFLOW STORAGE	
	(cms) (ha.m.) (cms) (ha.m.)	
	0.0000 0.0000 0.1010 0.3750	
	0.0340 0.2200 0.0000 0.0000	
	AREA OPEAK TPEAK R.V.	
	(ha) (cms) (hrs) (mm)	
INFLOW : ID= 2 (0105) 5.370 0.174 3.00 52.27	
OUTFLOW: ID= 1 (0028) 5.370 0.034 8.00 51.96	
OVERFLOW:ID= 3 (0003) 0.000 0.000 0.00 0.00	
-		
	UTAL NUMBER OF SIMULATION OVERFLOW - 0	
P	(10000) = 0.00	
Р	EAK FLOW REDUCTION [Qout/Qin](%)= 19.34	
Т	IME SHIFT OF PEAK FLOW (min)=300.00	
Μ	AXIMUM STORAGE USED (ha.m.)= 0.2182	
		_
CALIB		
STANDHYD (0032)	Area $(ha) = 2.71$	
ID= 1 DT= 5.0 min	Total Imp(%)= 75.00	
	TMPERVIOUS PERVIOUS (i)	
Surface Area	(ha) = 2.03 0.68	
Dep. Storage	(mm) = 1.00 1.57	
Average Slope	(%) = 1.00 2.00	
Length	(m)= 134.41 30.00	
Mannings n	= 0.013 0.250	
NOTE: RAIN	FALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.	
	TRANSFORMED HVETOGRADH	
ттм	F RATN I TIME RATN I' TIME RATN I TIME RATN	
1 ± 11		

						1	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54	6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54	6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54	6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00

	1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
	1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
	1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
	1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
	1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
	1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
	1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
	1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
	2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
	2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
	2.167	14.25	5.417	6.84	8.667	0.57	11.92	0.00
	2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
	2.333	14.25	5.583	6.84	8.833	0.57	12.08	0.00
	2.417	14.25	5.667	6.84	8.917	0.57	12.17	0.00
	2.500	14.25	5.750	6.84	9.000	0.57	12.25	0.00
	2.583	14.25	5.833	6.84	9.083	0.00	12.33	0.00
	2.667	14.25	5.917	6.84	9.167	0.00	12.42	0.00
	2.750	14.25	6.000	6.84	9.250	0.00	12.50	0.00
	2.833	14.25	6.083	4.56	9.333	0.00	12.58	0.00
	2.917	14.25	6.167	4.56	9.417	0.00	12.67	0.00
	3.000	14.25	6.250	4.56	9.500	0.00	12.75	0.00
	3.083	12.54	6.333	4.56	9.583	0.00	12.83	0.00
	3.167	12.54	6.417	4.56	9.667	0.00	12.92	0.00
	3.250	12.54	6.500	4.56	9.750	0.00	13.00	0.00
ff	Toton (mm	/hr)_	14 25	-	12 02			

Max.Eff.Inten.(r	nm/hr)=	14.25	12.83	
over	(min)	5.00	25.00	
Storage Coeff.	(min)=	6.65 (ii)	20.15 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	25.00	
Unit Hyd. peak	(cms)=	0.18	0.05	
				T0TALS
PEAK FLOW	(cms)=	0.08	0.02	0.102 (iii)
TIME TO PEAK	(hrs)=	3.00	3.33	3.00
RUNOFF VOLUME	(mm)=	55.82	47.56	53.75
TOTAL RAINFALL	(mm)=	56.82	56.82	56.82
RUNOFF COEFFICIE	ENT =	0.98	0.84	0.95

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 96.6 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0035)	0VERFL0W	/ IS ON			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORA	GE	OUTFLOW	STORAGE
	(cms)	(ha.m	.)	(cms)	(ha.m.)
	0.0000	0.00	00	0.0610	0.1900
	0.0200	0.12	00	0.0000	0.0000
	A	AREA	QPEAK	TPEAK	R.V.
	((ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (0032) 2	2.710	0.102	3.00	53.75
OUTFLOW: ID= 1 (0035) 2	2.710	0.019	7.25	53.19
OVERFLOW:ID= 3 (0003) 0	0.000	0.000	0.00	0.00

TOTAL NUMBER OF SIMULATION OVERFLOW = • CUMULATIVE TIME OF OVERFLOW (HOURS) = 0.00 PERCENTAGE OF TIME OVERFLOWING (%) = 0.00 FLOW REDUCTION [Qout/Qin](%)= 18.65 PEAK TIME SHIFT OF PEAK FLOW (min)=255.00 MAXIMUM STORAGE USED (ha.m.)= 0.1139 _____ | ADD HYD (0001)|

 + 2 = 3
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ID1= 1 (0027):
 2.15
 0.012
 8.08
 51.93

 + ID2= 2 (0028):
 5.37
 0.034
 8.00
 51.96

 | 1 + 2 = 3 | -----_____ ID = 3 (0001): 7.52 0.046 8.08 51.95 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0001)| AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 | (ha) (cms) (hrs) -----ID1= 3 (0001): 7.52 0.046 8.08 51.95 + ID2= 2 (0035): 2.71 0.019 7.25 53.19 _____ ID = 1 (0001): 10.23 0.064 7.75 52.28 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ | CALIB | STANDHYD (0107) Area (ha)= 4.21 |ID= 1 DT= 5.0 min | Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00 IMPERVIOUS PERVIOUS (i) (ha)= 3.16 1.05 Surface Area Dep. Storage(mm)=1.001.57Average Slope(%)=0.350.35Length(m)=167.53593.00Mannings n=0.0130.050 Length Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN |' TIME RAIN | TIME mm/hr | hrs mm/hr |' hrs mm/hr | hrs TIME RAIN hrs mm/hr 0.083 0.00 | 3.333 12.54 | 6.583 4.56 | 9.83 0.00 0.167 0.00 | 3.417 12.54 | 6.667 4.56 | 9.92 0.00 0.250 0.00 | 3.500 12.54 | 6.750 4.56 | 10.00 0.00

 0.333
 0.00 | 3.583
 12.54 | 6.833
 4.56 | 10.08
 0.00

 0.417
 0.00 | 3.667
 12.54 | 6.917
 4.56 | 10.17
 0.00

 0.500
 0.00 | 3.750
 12.54 | 7.000
 4.56 | 10.25
 0.00

0.5830.003.83312.547.0831.7110.330.000.6670.003.91712.547.1671.7110.420.00

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 4.000 0.00 4.083 0.00 4.167 0.00 4.250 0.55 4.333 0.55 4.417 0.55 4.583 0.55 4.667 0.55 4.667 0.55 4.667 0.55 4.917 0.55 5.083 0.55 5.083 0.55 5.167 0.55 5.250 0.25 5.333 0.25 5.417 0.25 5.583 0.25 5.583 0.25 5.583 0.25 5.583 0.25 5.667 0.25 5.833 0.25 5.833 0.25 5.917 0.25 5.833 0.25 5.917 0.25 5.833 0.25 5.833 0.25 5.833 0.25 5.833 0.25 5.833 0.25 5.833 0.25 5.833 0.25 5.917 0.25 6.000 0.25 6.083 0.25 6.167 0.25 6.250 0.25 6.250 0.25 6.250 0.25 6.250 0.25 6.417	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.50 10.58 10.67 10.75 10.75 10.75 10.75 11.00 11.00 11.17 11.17 11.33 11.42 11.50 11.58 11.75 11.75 11.75 11.75 11.75 11.20 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.250 12.00 12.00 12.25 12.25 12.25 12.58 12.58 12.75 12.75 12.75 12.75 12.83	0.00 0.00
3.250 12 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min) Unit Hyd. Tpeak (min) Unit Hyd. peak (cms) PEAK FLOW (cms) TIME TO PEAK (hrs) RUNOFF VOLUME (mm) TOTAL RAINFALL (mm) RUNOFF COEFFICIENT (i) CN PROCEDURE SE CN* = 90.7 (ii) TIME STEP (DT) THAN THE STORAG (iii) PEAK FLOW DOES	2.54 6.500 = 14.25 10.00 = 10.40 = 0.11 = 0.12 = 3.00 = 55.82 = 56.82 = 0.98 ELECTED FOR PE Ia = Dep. S SHOULD BE SMA E COEFFICIENT NOT INCLUDE E	4.56 9 9. 70. (ii) 68. 70. 0. 0. 4. 37. 56. 0. ERVIOUS LOS Storage (A LLER OR EQ ASEFLOW IF	53 00 92 (ii) 00 02 83 55 82 66 SES: bove) UAL ANY.	TOTALS* 0.133 (iii) 3.00 51.24 56.82 0.90	0.00
RESERVOIR(0029) C IN= 2> OUT= 1 DT= 5.0 min C	OVERFLOW IS ON OUTFLOW STO (cms) (ha 0.0000 0. 0.0360 0.	DRAGE I.m.) 0000 1600	OUTFLOW S (cms) (0.1060 0.0000	STORAGE (ha.m.) 0.2550 0.0000	

QPEAK TPEAK (cms) (hrs) AREA R.V. (ha) (mm) 0.133 3.00 51.24 INFLOW : ID= 2 (0107) 4.210 4.210 7.33 OUTFLOW: ID= 1 (0029) 0.035 50.98 OVERFLOW:ID= 3 (0003) 0.000 0.000 0.00 0.00 TOTAL NUMBER OF SIMULATION OVERFLOW = 0 CUMULATIVE TIME OF OVERFLOW (HOURS) = 0.00 PERCENTAGE OF TIME OVERFLOWING (%) = 0.00PEAK FLOW REDUCTION [Qout/Qin](%)= 26.06 TIME SHIFT OF PEAK FLOW (min)=260.00 MAXIMUM STORAGE USED (ha.m.)= 0.1537 CALIB STANDHYD (0023) Area (ha)= 1.72 |ID= 1 DT= 5.0 min | Total Imp(%)= 89.00 Dir. Conn.(%)= 89.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= Dep. Storage (mm)= (ha)= 1.53 0.19 (m) = 1.00 (%) = 1.00 (m) = 107.08 = 0.0101.57 Average Slope 2.00 Length 136.00 Mannings n 0.050 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | ' TIME RAIN | TIME RAIN TIME mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr hrs

 0.00
 3.333
 12.54
 6.583
 4.56
 9.83
 0.00

 0.00
 3.417
 12.54
 6.667
 4.56
 9.92
 0.00

 0.00
 3.500
 12.54
 6.750
 4.56
 10.00
 0.00

 0.083 0.167

0.250	0.00	3.500	12.54	6.750	4.50	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00

2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500	6.84 6.84 6.84 6.84 6.84 6.84 4.56 4.56 4.56 4.56 4.56	8.667 8.750 8.833 8.917 9.000 9.083 9.167 9.250 9.333 9.417 9.500 9.583 9.667 9.750	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Max.Eff.Inten ove Storage Coeff Unit Hyd. Tpea Unit Hyd. peal PEAK FLOW	.(mm/hr)= er (min) . (min)= ak (min)= < (cms)= (cms)=	14.25 5.00 5.80 (1 5.00 0.20 0.06	ii) 2	8.96 25.00 20.50 (ii) 25.00 0.05 0.00	*TOTALS* 0.064 (:	iii)
RUNOFF VOLUME TOTAL RAINFALI RUNOFF COEFFIC	(MrS)= (mm)= _ (mm)= CIENT =	3.00 55.82 56.82 0.98	ţ	4.08 33.11 56.82 0.58	3.00 53.32 56.82 0.94	
(i) CN PROCE CN* = (ii) TIME STE THAN THE (iii) PEAK FLO	EDURE SELECTED 87.3 Ia = EP (DT) SHOULD E STORAGE COEF DW DOES NOT IN) FOR PER = Dep. Sto) BE SMAL =FICIENT. HCLUDE BA	VIOUS I orage LER OR SEFLOW	LOSSES: (Above) EQUAL IF ANY.		
IN= 2> OUT= 1 DT= 5.0 min	OUTFLOV OUTFLOV (cms) 0.0000 0.0320	V STOR (ha.) 0 0.00	AGE n.) 900 450	OUTFLOW (cms) 0.0940 0.0000	STORAGE (ha.m.) 0.0600 0.0000	
INFLOW : ID= 2 OUTFLOW: ID= 1 OVERFLOW:ID= 3	(0023) (0038) (0003)	AREA (ha) 1.720 1.720 0.000	QPEAK (cms) 0.00 0.03	TPEAK (hrs) 64 3.0 31 6.0 90 0.0	R.V. (mm) 90 53.32 90 53.12 90 0.00	2 1 9
	TOTAL NUMBER CUMULATIVE TI PERCENTAGE OF	OF SIMULA IME OF OV TIME OV	ATION (ERFLOW ERFLOW:	OVERFLOW = (HOURS) = ING (%) =	= 0 = 0.00 = 0.00	
	PEAK FLOW TIME SHIFT OF MAXIMUM STOF	REDUCTIO PEAK FLO RAGE US	ON [QOU OW ED	ut/Qin](%)= (min)= (ha.m.)=	= 47.95 =180.00 = 0.0431	
	· - · · · · · · · · · · · · · · · · · ·					

CALIB STANDHYD (0034) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	2.65 75.00	Dir. Conn.(%)=	75.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIO 1.99 1.00 1.00 132.92 0.013	US	PERVIOUS (i) 0.66 1.57 2.00 30.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORME	D HYETOGR/	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54	6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54	6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54	6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.41/	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167	14.25	5.417	6.84		0.57	11.92	0.00
2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333	14.25		6.84		0.57	12.08	0.00
2.417	14.25	5.007	6.84	8.917	0.57		0.00
2.500	14.25	5.750	6.84		0.57	12.25	0.00
2.583	14.25		0.84	9.083		12.33	0.00
2.667	14.25	5.917	0.84	9.167		12.42	0.00
2.750	14.25		6.84	9.250		12.50	0.00
2.833	14.25		4.50	9.333		12.58	
2.917	14.25		4.50	9.417			0.00
3.000	10 5/	0.250	4.50	9.500		12./3	
3.U03 0 167	12.04	0.333	4.50	9.000		12.03 12.02	0.00
3.10/	12.04 10 54		4.50	9.007		12.92 12.00	0.00
3.230	12.34	1 0.500	4.30	9.750	0.00	1 13.00	0.00
May Eff Inten (mm)	(hr)=	1/ 25		8 23			
OVer (n	nin)	5 00		25 00			
טעבו (וו		5.00	4				

Storage Coeff Unit Hyd. Tpea Unit Hyd. peal	(min)= ak (min)= < (cms)=	6.61 5.00 0.18	(ii) 22 25 0	2.73 (ii) 5.00).05	****	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALI RUNOFF COEFFIC	(cms)= (hrs)= (mm)= _ (mm)= CIENT =	0.08 3.00 55.82 56.82 0.98	6 4 36 56 6).01 4.08).50).82).54	0.089 (iii) 3.00 49.49 56.82 0.87	
(i) CN PROCE CN* = (ii) TIME STE THAN THE (iii) PEAK FLO	EDURE SELECT 85.0 Ia EP (DT) SHOU STORAGE CO DW DOES NOT	TED FOR PE a = Dep. S JLD BE SMA DEFFICIENT INCLUDE B	RVIOUS LC torage (LLER OR E ASEFLOW I	DSSES: Above) QUAL F ANY.		_
RESERVOIR(0037) IN= 2> OUT= 1 DT= 5.0 min	0 OVERF OUTFL (cms 0.00 0.01	ELOW IS ON LOW STO S) (ha 000 0. L80 0.	RAGE .m.) 0000 1100	OUTFLOW (cms) 0.0520 0.0000	STORAGE (ha.m.) 0.1800 0.0000	
INFLOW : ID= 2 OUTFLOW: ID= 1 OVERFLOW:ID= 3	(0034) (0037) (0003)	AREA (ha) 2.650 2.650 0.000	QPEAK (cms) 0.089 0.017 0.000	TPEAK (hrs) 3.00 7.29 0.00	R.V. (mm) 0 49.49 5 48.90 0 0.00	
	CUMULATIVE PERCENTAGE PEAK FLOW	TIME OF SIMU TIME OF O OF TIME O N REDUCT	VERFLOW VERFLOWIN ION [Qout	(HOURS) = IG (%) = (Qin](%)=	0.00 0.00 18.95	
	MAXIMUM ST	TORAGE U	SED	(ha.m.)=	0.1029	-
ADD HYD (0024) 1 + 2 = 3 ID1= 1 ((+ ID2= 2 (() 	AREA QP (ha) (c 4.21 0.0 2.65 0.0	EAK TF ms) (h 35 7. 17 7.	PEAK R nrs) (r 33 50.9 25 48.9	.V. nm) 98 90	
ID = 3 ((NOTE: PEAK FI	0024): 6	5.86 0.0 INCLUDE B	51 7. ASEFLOWS	33 50.2 IF ANY.	 17	_
ADD HYD (0024) 3 + 2 = 1 ID1= 3 (0) 	AREA QP (ha) (c 3.86 0.0	EAK TF ms) (h 51 7.	PEAK R irs) (1 33 50.2	.V. nm) 17	

+ ID2= 2 (0038): 1.72 0	.031	6.00	53.11
ID = 1 (0024): 8.58 0	.080	7.00	50.76
NOTE: PEAK FLOWS	DO NOT INCLUDE	BASEFLOW	S IF ANY	
CALIB				
NASHYD (0020) ID= 1 DT= 5.0 min	Area (ha)= Ia (mm)= U.H. Tp(hrs)=	1.18 (4.67 ; 0.42	Curve Nu # of Lin	mber (CN)= 60.2 ear Res.(N)= 3.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	12.54	6.583	4.56	9.83	0.00
0.167	0.00	3.417	12.54	6.667	4.56	9.92	0.00
0.250	0.00	3.500	12.54	6.750	4.56	10.00	0.00
0.333	0.00	3.583	12.54	6.833	4.56	10.08	0.00
0.417	0.00	3.667	12.54	6.917	4.56	10.17	0.00
0.500	0.00	3.750	12.54	7.000	4.56	10.25	0.00
0.583	0.00	3.833	12.54	7.083	1.71	10.33	0.00
0.667	0.00	3.917	12.54	7.167	1.71	10.42	0.00
0.750	0.00	4.000	12.54	7.250	1.71	10.50	0.00
0.833	0.00	4.083	7.80	7.333	1.71	10.58	0.00
0.917	0.00	4.167	7.80	7.417	1.71	10.67	0.00
1.000	0.00	4.250	7.80	7.500	1.71	10.75	0.00
1.083	8.55	4.333	7.80	7.583	1.71	10.83	0.00
1.167	8.55	4.417	7.80	7.667	1.71	10.92	0.00
1.250	8.55	4.500	7.80	7.750	1.71	11.00	0.00
1.333	8.55	4.583	7.80	7.833	1.71	11.08	0.00
1.417	8.55	4.667	7.80	7.917	1.71	11.17	0.00
1.500	8.55	4.750	7.80	8.000	1.71	11.25	0.00
1.583	8.55	4.833	7.80	8.083	0.57	11.33	0.00
1.667	8.55	4.917	7.80	8.167	0.57	11.42	0.00
1.750	8.55	5.000	7.80	8.250	0.57	11.50	0.00
1.833	8.55	5.083	6.84	8.333	0.57	11.58	0.00
1.917	8.55	5.167	6.84	8.417	0.57	11.67	0.00
2.000	8.55	5.250	6.84	8.500	0.57	11.75	0.00
2.083	14.25	5.333	6.84	8.583	0.57	11.83	0.00
2.167	14.25	5.417	6.84	8.667	0.57	11.92	0.00
2.250	14.25	5.500	6.84	8.750	0.57	12.00	0.00
2.333	14.25	5.583	6.84	8.833	0.57	12.08	0.00
2.417	14.25	5.667	6.84	8.917	0.57	12.17	0.00
2.500	14.25	5.750	6.84	9.000	0.57	12.25	0.00
2.583	14.25	5.833	6.84	9.083	0.00	12.33	0.00
2.667	14.25	5.917	6.84	9.167	0.00	12.42	0.00
2.750	14.25	6.000	6.84	9.250	0.00	12.50	0.00
2.833	14.25	6.083	4.56	9.333	0.00	12.58	0.00
2.917	14.25	6.167	4.56	9.417	0.00	12.67	0.00
3.000	14.25	6.250	4.56	9.500	0.00	12.75	0.00
3.083	12.54	6.333	4.56	9.583	0.00	12.83	0.00
3.167	12.54	6.417	4.56	9.667	0.00	12.92	0.00
3.250	12.54	6.500	4.56	9.750	0.00	13.00	0.00

Unit Hyd Qpeak (cms)= 0.107

rEAK FLOW (cms)= 0.010 (i) TIME TO PEAK (hrs)= 4 107 UNOFF VOLUME (mm)- 10 TOTAL DATE TOTAL RAINFALL (mm)= 56.820 RUNOFF COEFFICIENT = 0.217 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | CALIB (0021) Area | NASHYD (ha)= 0.43 Curve Number (CN)= 61.9 (mm)= 4.67 # of Linear Res.(N)= 3.00 |ID= 1 DT= 5.0 min | Ia ----- U.H. Tp(hrs)= 0.53 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----TIME RAIN | TIME RAIN | ' TIME RAIN | TIME RAIN
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 hrs
 hrs
 hrs
 hrs
 hrs
 hrs
 hrs</ hrs mm/hr 0.083 0.167 0.250 0.00 | 3.500 12.54 | 6.750 4.56 | 10.00 0.00 0.333 0.00 | 3.583 12.54 | 6.833 4.56 | 10.08 0.00 0.00 | 3.667 12.54 | 6.917 4.56 | 10.17 0.417 0.00 0.00 0.00 0.00 0.00 0.833 0.00 | 4.083 7.80 | 7.333 1.71 | 10.58 0.00 0.917 0.00 | 4.167 7.80 | 7.417 1.71 | 10.67 0.00 1.000 0.00 | 4.250 7.80 | 7.500 1.71 | 10.75 0.00

 8.55
 4.333
 7.80
 7.583
 1.71
 10.83

 8.55
 4.417
 7.80
 7.667
 1.71
 10.92

 8.55
 4.500
 7.80
 7.750
 1.71
 11.00

 0.00 1.083 1.167 0.00 0.00 1.250 1.333 8.55 | 4.583 7.80 | 7.833 1.71 | 11.08 0.00 1.417 8.55 | 4.667 7.80 | 7.917 1.71 | 11.17 0.00 1.500 8.55 | 4.750 7.80 | 8.000 1.71 | 11.25 0.00 1.583 8.55 | 4.833 7.80 | 8.083 0.57 | 11.33 0.00 7.80 | 8.167 0.57 | 11.42 8.55 | 4.917 1.667 0.00 8.55 | 5.000 7.80 | 8.250 0.57 | 11.50 1.750 0.00 0.00 1.833 8.55 | 5.083 6.84 | 8.333 0.57 | 11.58 1.917 8.55 | 5.167 6.84 | 8.417 0.57 | 11.67 0.00 2.000 8.55 | 5.250 6.84 | 8.500 0.57 | 11.75 0.00 2.083 14.25 | 5.333 6.84 | 8.583 0.57 | 11.83 0.00 14.25 | 5.417 6.84 | 8.667 0.57 | 11.92 2.167 0.00 14.25 | 5.500 6.84 | 8.750 0.57 | 12.00 2.250 0.00 2.333 14.25 | 5.583 6.84 | 8.833 0.57 | 12.08 0.00 2.417 14.25 | 5.667 6.84 | 8.917 0.57 | 12.17 0.00 2.500 14.25 | 5.750 6.84 | 9.000 0.57 | 12.25 0.00 2.583 14.25 | 5.833 6.84 | 9.083 0.00 | 12.33 0.00 2.667 14.25 | 5.917 6.84 | 9.167 0.00 | 12.42 0.00 2.750 14.25 | 6.000 6.84 | 9.250 0.00 | 12.50 0.00

 14.25
 6.083
 4.56
 9.333
 0.00
 12.58

 14.25
 6.167
 4.56
 9.417
 0.00
 12.67

 2.833 0.00 0.00 2.917 3.000 14.25 | 6.250 4.56 | 9.500 0.00 | 12.75 0.00 3.083 12.54 | 6.333 4.56 | 9.583 0.00 | 12.83 0.00

3.167 12.54 | 6.417 4.56 | 9.667 0.00 | 12.92 0.00 3.250 12.54 | 6.500 4.56 | 9.750 0.00 | 13.00 0.00 Unit Hyd Opeak (cms)= 0.031 (cms)= 0.004 (i) PEAK FLOW TIME TO PEAK (hrs)= 4.250 RUNOFF VOLUME (mm)= 13.041 TOTAL RAINFALL (mm)= 56.820 TIME TO PEAK RUNOFF COEFFICIENT = 0.230 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | CALIB | STANDHYD (0108)| Area (ha)= 1.57 |ID= 1 DT= 5.0 min | Total Imp(%)= 52.00 Dir. Conn.(%)= 52.00 IMPERVIOUS PERVIOUS (i) Surface Area(ha) =0.820.75Dep. Storage(mm) =1.001.57Average Slope(%) =0.500.50Length(m) =102.31387.00Mannings n=0.0130.050NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----TIMERAIN |TIMERAIN |TIMERAINhrsmm/hr |hrsmm/hr |'hrsmm/hr |hrsmm/hr 0.500 0.00 | 3.750 12.54 | 7.000 4.56 | 10.25 0.00 0.583 0.00 | 3.833 12.54 | 7.083 1.71 | 10.33 0.00 0.667 0.00 | 3.917 12.54 | 7.167 1.71 | 10.42 0.00 0.750 0.00 | 4.000 12.54 | 7.250 1.71 | 10.50 0.00
 0.833
 0.00
 4.083
 7.80
 7.333
 1.71
 10.58
 0.00

 0.917
 0.00
 4.167
 7.80
 7.417
 1.71
 10.67
 0.00

 1.000
 0.00
 4.250
 7.80
 7.500
 1.71
 10.75
 0.00
 1.083 8.55 | 4.333 7.80 | 7.583 1.71 | 10.83 0.00 1.167 8.55 | 4.417 7.80 | 7.667 1.71 | 10.92 0.00 1.250 8.55 | 4.500 7.80 | 7.750 1.71 | 11.00 0.00

 1.333
 8.55
 4.583
 7.80
 7.833
 1.71
 11.08
 0.00

 1.417
 8.55
 4.667
 7.80
 7.917
 1.71
 11.17
 0.00

 1.500
 8.55
 4.750
 7.80
 8.000
 1.71
 11.25
 0.00

 0.00 1.583 8.55 | 4.833 7.80 | 8.083 0.57 | 11.33 1.667 8.55 | 4.917 7.80 | 8.167 0.57 | 11.42 0.00 1.750 8.55 | 5.000 7.80 | 8.250 0.57 | 11.50 0.00 1.833 8.55 | 5.083 6.84 | 8.333 0.57 | 11.58 0.00 1.917 8.55 5.167 6.84 8.417 0.57 11.67 0.00

 1.017
 0.037
 0.047
 0.047
 0.047
 0.057
 11.07
 0.00

 2.000
 8.55
 5.250
 6.84
 8.500
 0.57
 11.75
 0.00

 2.083
 14.25
 5.333
 6.84
 8.583
 0.57
 11.83
 0.00

 2.167
 14.25
 5.417
 6.84
 8.667
 0.57
 11.92
 0.00

2.250 14.25 | 5.500 6.84 | 8.750 0.57 | 12.00 0.00

2.33 2.41 2.50 2.58 2.66 2.75 2.83 2.91 3.00 3.08 3.16 3.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.583 5.667 5.750 5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500	6.84 6.84 6.84 6.84 4.56 4.56 4.56 4.56 4.56	<pre>8.833 8.917 9.000 9.083 9.167 9.250 9.333 9.417 9.500 9.583 9.667 9.750</pre>	$\begin{array}{c c c} 0.57 & \\ 0.57 & \\ 0.57 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \\ 0.00 & \end{array}$	12.08 12.17 12.25 12.33 12.42 12.50 12.58 12.67 12.75 12.83 12.92 13.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	nm/hr)= (min) (min)= (min)= (cms)=	14.25 5.00 6.95 (5.00 0.17	ii)	7.66 55.00 51.38 (ii) 55.00 0.02	*тот	ALS*	
TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(CMS)= (hrs)= (mm)= (mm)= ENT =	0.03 3.00 55.82 56.82 0.98		4.58 29.56 56.82 0.52	0. 4 43 56 0	.00 .20 .82 .76	
(i) CN PROCEDU CN* = 8 (ii) TIME STEP THAN THE 9 (iii) PEAK FLOW	JRE SELECTE 34.1 Ia (DT) SHOUL STORAGE COE DOES NOT I	D FOR PER = Dep. St D BE SMAL FFICIENT. NCLUDE BA	VIOUS orage LER OF SEFLOV	LOSSES: (Above) R EQUAL W IF ANY.			
RESERVOIR(0026) IN= 2> OUT= 1 DT= 5.0 min	OVERFL OUTFLO (cms) 0.000 0.006	OW IS ON W STOR (ha. 0 0.0 0 0.0	AGE m.) 000 600	OUTFLOW (cms) 0.0200 0.0000	ST0 (ha 0 0	RAGE .m.) .1100 .0000	
INFLOW : ID= 2 (OUTFLOW: ID= 1 (OVERFLOW:ID= 3 (0108) 0026) 0003)	AREA (ha) 1.570 1.570 0.000	QPEAK (cms) 0.0 0.0	K TPEAK (hrs) 040 4.0 006 8.9 000 0.0	90 50 90	R.V. (mm) 43.20 41.58 0.00	
T(Cl Pl	DTAL NUMBER JMULATIVE T ERCENTAGE O	OF SIMUL IME OF OV F TIME OV	ATION ERFLOW ERFLOW	OVERFLOW = V (HOURS) = VING (%) =	= 0.00 = 0.00 = 0.00		
P! T: M/	EAK FLOW IME SHIFT O AXIMUM STO	REDUCTI F PEAK FL RAGE US	ON [Qo OW ED	out/Qin](%): (min): (ha.m.):	= 14.15 =270.00 = 0.05	68	

| ADD HYD (0025)|

| 1 + 2 = 3 | ------ID = 3 (0025): 1.61 0.013 4.17 12.54 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. -----| ADD HYD (0025)|

 + 2 = 1
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ID1= 3 (0025):
 1.61
 0.013
 4.17
 12.54

 + ID2= 2 (0026):
 1.57
 0.006
 8.50
 41.58

 | 3 + 2 = 1 | -----_____ ID = 1 (0025): 3.18 0.016 4.25 26.88 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. - - - - -.

_____ SSSSS U V (v 6.1.2003) V Ι U Α L V Ι U ΑΑ V SS U L V V Ι SS U U AAAAA L V V Ι SS U U Α А L Ι SSSSS UUUUU VV А А LLLLL 000 TTTTT TTTTT 000 ТΜ н н Υ Υ Μ Μ Т Н Н ΥY MM MM 0 0 0 Т 0 Т Т Н Н Μ 0 0 Υ Μ 0 0 000 Т Т Н Н Υ Μ Μ 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. * * * * * 0 U T P U T ***** DETAILED filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\V02\voin.dat Input Output filename: C:\Users\agiampuzzi\AppData\Local\Civica\VH5\94083ae8-c3cd-4c22-9e28-a8fff57a7688\5c8c4d89-563c-48f8-83f6-11708c733ed2\s Summary filename: C:\Users\aqiampuzzi\AppData\Local\Civica\VH5\94083ae8-c3cd-4c22-9e28-a8fff57a7688\5c8c4d89-563c-48f8-83f6-11708c733ed2\s DATE: 10-26-2021 TIME: 02:24:38 USER: COMMENTS: _____ ** SIMULATION : 02-AES-100yr * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Filename: C:\Users\agiampuzzi\AppD READ STORM ata\Local\Temp\ 7ac3cc91-ada5-4407-a88e-b2e97255f693\a509c388 Ptotal=101.80 mm | Comments: 100 Year RAIN |' TIME RAIN | TIME TIME RAIN | TIME RAIN mm/hr |' hrs mm/hr | hrs hrs mm/hr | hrs mm/hr 1.00 0.00 | 5.00 14.25 9.00 1.02 | 13.00 0.00 2.00 15.27 | 6.00 12.22 | 10.00 0.00 | 3.00 25.45 7.00 8.14 | 11.00 0.00 | 4.00 22.40 | 8.00 3.05 | 12.00 0.00 |

CALIB STANDHYD (0102) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	2.15 75.00	Dir. Conn.(%)=	75.00
		IMPERVI	DUS	PERVIOUS (i)	
Surface Area	(ha)=	1.61	L	0.54	
Dep. Storage	(mm)=	1.00)	1.57	
Average Slope	(%)=	0.50)	0.50	
Length	(m)=	119.72	2	587.00	
Mannings n	=	0.013	3	0.050	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	22.40	6.583	8.14	9.83	0.00
0.167	0.00	3.417	22.40	6.667	8.14	9.92	0.00
0.250	0.00	3.500	22.40	6.750	8.14	10.00	0.00
0.333	0.00	3.583	22.40	6.833	8.14	10.08	0.00
0.417	0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500	0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00	12.75	0.00
3.083	22.40	6.333	8.14	9.583	0.00	12.83	0.00
3.167	22.40	6.417	8.14	9.667	0.00	12.92	0.00
3.250	22.40	6.500	8.14	9.750	0.00	13.00	0.00

Max.Eff.Inten.(mm∕hr)=	25.45	22.80	
over	(min)	5.00	45.00	
Storage Coeff.	(min)=	6.06	(ii) 42.93	(ii)
Unit Hyd. Tpeak	(min)=	5.00	45.00	
Unit Hyd. peak	(cms)=	0.19	0.03	
				TOTALS
PEAK FLOW	(cms)=	0.11	0.03	0.136 (iii)
TIME TO PEAK	(hrs)=	3.00	4.17	3.00
RUNOFF VOLUME	(mm)=	100.80	87.78	97.53
TOTAL RAINFALL	(mm)=	101.80	101.80	101.80
RUNOFF COEFFICI	ENT =	0.99	0.86	0.96

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 94.7 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE PASEFLOW IE ANY

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

<pre> RESERVOIR(0027) IN= 2> 0UT= 1 </pre>	OVERFL	LOW IS ON			
DT= 5.0 min	OUTFLO	W STO	RAGE	OUTFLOW	STORAGE
	(CMS)) (na	.m.)	(CMS)	(na.m.)
	0.000	00 0.	0000	0.0390	0.1600
	0.013	30 0.	1000	0.0000	0.0000
		AREA	QPEAK	TPEAK	R.V.
		(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (0102)	2.150	0.136	3.00	97.53
OUTFLOW: ID= 1 (0027)	2.150	0.037	7.08	96.62
OVERFLOW:ID= 3 (0003)	0.000	0.000	0.00	0.00

TOTAL NUMBER OF SIMULATION OVERFLOW =0CUMULATIVE TIME OF OVERFLOW (HOURS) =0.00PERCENTAGE OF TIME OVERFLOWING (%) =0.00

PEAKFLOWREDUCTION[Qout/Qin](%)= 27.49TIME SHIFT OF PEAK FLOW(min)=245.00MAXIMUMSTORAGEUSED(ha.m.)=0.1564

| CALIB | | STANDHYD (0105)| Area (ha)= 5.37

ID= 1 DT= 5.0 min	Total Imp(%)=	77.00	Dir. Conn.(%)=	77.00

		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	4.13	1.24	
Dep. Storage	(mm)=	1.00	1.57	
Average Slope	(%)=	0.40	0.40	
Length	(m)=	189.21	604.00	
Mannings n	=	0.013	0.050	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917	RAIN mm/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.27 25.45 25	TIME hrs 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.417 4.500 4.583 4.667 4.750 4.583 4.667 4.750 5.083 5.167 5.250 5.333 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.500 5.583 5.417 5.250 5.333 5.417 5.250 5.250 5.333 5.417 5.250 5.333 5.417 5.250 5.333 5.417 5.250 5.333 5.417 5.250 5.333 5.417 5.250 5.333 5.417 5.250	RAIN mm/hr 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 14.25 12.22	<pre> ' TIME ' hrs 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.833 8.667 8.750 8.833 8.917 9.000 9.083 9.167 9.250 9.333 9.417 9.500</pre>	RAIN mm/hr 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14	TIME hrs 9.83 9.92 10.00 10.08 10.17 10.25 10.33 10.42 10.50 10.58 10.67 10.75 10.83 10.92 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75 11.83 11.92 12.00 12.08 12.17 12.25 12.33 12.42 12.50 12.58 12.67 12.75	RAIN mm/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
3.000 3.083 3.167	25.45 25.45 22.40 22.40	6.250 6.333 6.417	8.14 8.14 8.14 8.14	9.500 9.583 9.667	0.00 0.00 0.00	12.07 12.75 12.83 12.92	0.00 0.00 0.00 0.00
3.250 Max.Eff.Inten.(mm	22.40 /hr)=	6.500 25.45	8.14	9.750 21.15	0.00	13.00	0.00
over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (min) min)= min)= cms)=	10.00 8.52 10.00 0.12	(ii)	50.00 49.85 (ii) 50.00 0.02	*T01	TALS*	
PEAK FLOW (TIME TO PEAK (RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	cms)= hrs)= (mm)= (mm)= T =	0.29 3.00 100.80 101.80 0.99	1	0.06 4.25 83.35 01.80 0.82	0. 3 96 101	.333 (iii) 3.00 5.78 1.80 9.95	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 92.6$ Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0028) IN= 2> OUT= 1	OVERFLOW	IS ON			
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	0.0000	0.0000	0.1010	0.3750	
	0.0340	0.2200	0.0000	0.0000	
				5.14	
	AR	EA QPEAK	I PEAK	R.V.	
	(1)	a) (CIIIS)	(IIIS) 22 2 00	()	
$\frac{1}{1} = \frac{1}{1} 0105) 5.	370 0.33 370 0.10		90.78		
OVERELOW: ID = 3 (0028) 5.			90.48	
07ER E00.1D= 3 (0003) 0.	0.00	0.00	0.00	
т	TAL NUMBER OF	SIMULATION (OVERFLOW =	Θ	
CI	JMULATIVE TIME	OF OVERFLOW	(HOURS) =	0.00	
PI	ERCENTAGE OF T	IME OVERFLOW	ENĠ (%) =	0.00	
PI	EAK FLOW R	EDUCTION [Qou	ut/Qin](%)= 3	30.05	
T	IME SHIFT OF P	EAK FLOW	(min)=25	50.00	
MA	AXIMUM STORAG	E USED	(ha.m.)=	0.3727	
STANDHYD (0032)	Area (ha)= 2.71			
ID= 1 DT= 5.0 min	Total Imp(%)= 75.00 [Dir. Conn.(%`	= 75.00	
	FX-	,			
	IMPE	RVIOUS PER	RVIOUS (i)		
Surface Area	(ha)=	2.03	0.68		
Dep. Storage	(mm)=	1.00	1.57		
Average Slope	(%)=	1.00	2.00		
Length	(m)= 13	4.41 3	30.00		
Mannings n	= 0	.013 (9.250		
NUTE: RAIN	ALL WAS TRANS	FURMED TO :	5.⊍ MIN. IIME	SIEP.	
		- TRANSFORME) HYETOGRAPH		
TIM	E RAIN T	IME RAIN	I' TIME F	RAIN TIME	RAIN
hrs	s mm/hr	hrs mm/hr	'hrs mi	n∕hr∣ hrs	mm/hr
0.083	3 0.00 <u> </u> 3.	333 22.40	6.583 8	14 9.83	0.00
0.16	7 0.00 3.	417 22.40	6.667 8	14 9.92	0.00
0.05/		-00 22 40		1/ 10 00	0 00

0.250	0.00	3.500	22.40	6.750	8.14	10.00	0.00
0.333	0.00	3.583	22.40	6.833	8.14	10.08	0.00
0.417	0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500	0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
-------	-------	-------	-------	-------	------	-------	------
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00	12.75	0.00
3.083	22.40	6.333	8.14	9.583	0.00	12.83	0.00
3.167	22.40	6.417	8.14	9.667	0.00	12.92	0.00
3.250	22.40	6.500	8.14	9.750	0.00	13.00	0.00

nm∕hr)=	25.45	24.44	
(min)	5.00	20.00	
(min)=	5.27 (i	i) 15.71 (ii)	
(min)=	5.00	20.00	
(cms)=	0.21	0.07	
			TOTALS
(cms)=	0.14	0.04	0.188 (iii)
(hrs)=	3.00	3.08	3.00
(mm)=	100.80	92.02	98.60
(mm)=	101.80	101.80	101.80
ENT =	0.99	0.90	0.97
	<pre>nm/hr)= (min) (min)= (min)= (cms)= (cms)= (hrs)= (hrs)= (mm)= (mm)= ENT =</pre>	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 96.6 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0035)	0VERFI	LOW IS ON	N		
IN= 2> OUT= 1					
DT= 5.0 min	OUTFL	OW STO	DRAGE	OUTFLOW	STORAGE
	(cms) (ha	a.m.)	(cms)	(ha.m.)
	0.00	90 0	.0000	0.0610	0.1900
	0.020	90 0	.1200	0.0000	0.0000
		AREA	QPEAK	TPEAK	R.V.
		(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (0032)	2.710	0.188	3.00	98.60
OUTFLOW: ID= 1 (0035)	2.710	0.059	7.00	98.04
OVERFLOW:ID= 3 (0003)	0.000	0.000	0.00	0.00

TOTAL NUMBER OF SIMULATION OVERFLOW = 0 CUMULATIVE TIME OF OVERFLOW (HOURS) = 0.00 PERCENTAGE OF TIME OVERFLOWING (%) = 0.00 FLOW REDUCTION [Qout/Qin](%) = 31.24 PEAK TIME SHIFT OF PEAK FLOW (min)=240.00 MAXIMUM STORAGE USED (ha.m.)= 0.1861 | ADD HYD (0001)|

 + 2 = 3
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ID1= 1 (0027):
 2.15
 0.037
 7.08
 96.62

 + ID2= 2 (0028):
 5.37
 0.100
 7.17
 96.48

 | 1 + 2 = 3 | -----_____ ID = 3 (0001): 7.52 0.137 7.17 96.52 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0001)|

 + 2 = 1
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ID1= 3 (0001):
 7.52
 0.137
 7.17
 96.52

 + ID2= 2 (0035):
 2.71
 0.059
 7.00
 98.04

 3 + 2 = 1 | . _____ _____ ID = 1 (0001): 10.23 0.196 7.08 96.92 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | CALIB | STANDHYD (0107) Area (ha)= 4.21 |ID= 1 DT= 5.0 min | Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00 IMPERVIOUS PERVIOUS (i) (ha)= 3.16 1.05 Surface Area Dep. Storage(mm)=1.001.57Average Slope(%)=0.350.35Length(m)=167.53593.00Mannings n=0.0130.050 Length Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN |' TIME RAIN | TIME mm/hr | hrs mm/hr |' hrs mm/hr | hrs TIME RAIN hrs mm/hr 0.083 0.00 | 3.333 22.40 | 6.583 8.14 | 9.83 0.00 0.167 0.00 | 3.417 22.40 | 6.667 8.14 | 9.92 0.00 0.250 0.00 | 3.500 22.40 | 6.750 8.14 | 10.00 0.00

 0.333
 0.00
 3.583
 22.40
 6.833
 8.14
 10.08
 0.00

 0.417
 0.00
 3.667
 22.40
 6.917
 8.14
 10.17
 0.00

 0.500
 0.00
 3.750
 22.40
 7.000
 8.14
 10.25
 0.00

 0.583 0.00 | 3.833 22.40 | 7.083 3.05 | 10.33 0.00

0.667 0.00 | 3.917 22.40 | 7.167 3.05 | 10.42 0.00

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 4.000 22.40 $0 $ 4.083 14.25 $0 $ 4.167 14.25 $0 $ 4.250 14.25 $0 $ 4.250 14.25 $7 $ 4.333 14.25 $7 $ 4.333 14.25 $7 $ 4.500 14.25 $7 $ 4.500 14.25 $7 $ 4.500 14.25 $7 $ 4.667 14.25 $7 $ 4.667 14.25 $7 $ 4.667 14.25 $7 $ 4.917 14.25 $7 $ 5.000 14.25 $7 $ 5.083 12.22 $7 $ 5.250 12.22 $5 $ 5.333 12.22 $5 $ 5.583 12.22 $5 $ 5.583 12.22 $5 $ 5.917 12.22 $5 $ 5.917 12.22 $5 $ 5.917 12.22 $5 $ 6.083 8.14 $5 $ 6.250 8.14 $0 $ 6.333 8.14 $0 $ 6.417 8.14	7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.417 8.500 8.583 8.667 8.750 8.833 8.917 9.000 9.083 9.167 9.250 9.333 9.417 9.500 9.583 9.667	3.05 10.5 3.05 10.6 3.05 10.7 3.05 10.7 3.05 10.8 3.05 10.9 3.05 10.9 3.05 11.0 3.05 11.0 3.05 11.0 3.05 11.2 1.02 11.3 1.02 11.3 1.02 11.5 1.02 11.5 1.02 11.5 1.02 11.7 1.02 11.7 1.02 11.8 1.02 11.9 1.02 12.0 1.02 12.0 1.02 12.1 1.02 12.5 0.00 12.5 0.00 12.5 0.00 12.7 0.00 12.8 0.00 12.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.250 22.4 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = (i) CN PROCEDURE SELE CN* = 90.7 (ii) TIME STEP (DT) SH THAN THE STORAGE (iii) PEAK FLOW DOES NO	0 6.500 8.14 25.45 10.00 8.25 (ii) 10.00 0.13 0.22 3.00 100.80 101.80 1 0.99 CTED FOR PERVIOUS Ia = Dep. Storage OULD BE SMALLER OR COEFFICIENT. T INCLUDE BASEFLOW	9.750 19.97 55.00 51.78 (ii) 55.00 0.02 0.05 4.42 79.56 01.80 0.78 LOSSES: (Above) EQUAL IF ANY.	0.00 13.0 *TOTALS* 0.252 (3.00 95.48 101.80 0.94	0 0.00
RESERVOIR(0029) OVE IN= 2> OUT= 1 DT= 5.0 min OUT (C 0. 0.	RFLOW IS ON FLOW STORAGE ms) (ha.m.) 0000 0.0000 0360 0.1600	OUTFLOW (cms) 0.1060 0.0000	STORAGE (ha.m.) 0.2550 0.0000	

IN= į dt= - - - - - -

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

AREA QPEAK TPEAK (ha) (cms) (hrs) R.V. (mm)

 4.210
 0.252
 3.00

 4.210
 0.103
 6.92

 0.000
 0.000
 0.00

 INFLOW : ID= 2 (0107) 95.48

 INFLOW:
 ID= 2 (0107)
 4.210

 OUTFLOW:
 ID= 1 (0029)
 4.210

 OVERFLOW:
 ID= 3 (0003)
 0.000

 95.22 0.000 0.00 TOTAL NUMBER OF SIMULATION OVERFLOW = 0 CUMULATIVE TIME OF OVERFLOW (HOURS) = 0.00 PERCENTAGE OF TIME OVERFLOWING (%) = 0.00FLOW REDUCTION [Qout/Qin](%)= 40.95 PEAK TIME SHIFT OF PEAK FLOW (min)=235.00 MAXIMUM STORAGE USED (ha.m.)= 0.2513 | CALIB STANDHYD (0023) Area (ha)= 1.72 |ID= 1 DT= 5.0 min | Total Imp(%)= 89.00 Dir. Conn.(%)= 89.00 -----IMPERVIOUS PERVIOUS (i) Surface Area(ha) =1.53Dep. Storage(mm) =1.00Average Slope(%) =1.00Length(m) =107.08Mannings n=0.013 0.19 1.57 2.00 136.00 0.050 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | ' TIME RAIN | TIME RAIN TIME mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr hrs

 0.00
 3.333
 22.40
 6.583
 8.14
 9.83
 0.00

 0.00
 3.417
 22.40
 6.667
 8.14
 9.92
 0.00

 0.00
 3.500
 22.40
 6.750
 8.14
 10.00
 0.00

 0.083 0.167 0.250 0.333 0.00 | 3.583 22.40 | 6.833 8.14 | 10.08 0.00 0.417 0.00 | 3.667 22.40 | 6.917 8.14 | 10.17 0.00 0.00

0.500 0.00 | 3.750 22.40 | 7.000 8.14 | 10.25 0.00 | 3.833 22.40 | 7.083 3.05 | 10.33 0.583 0.00

 0.00
 3.917
 22.40
 7.167
 3.05
 10.42

 0.00
 4.000
 22.40
 7.250
 3.05
 10.50

 0.667 0.750 0.00 0.00 | 4.083 14.25 | 7.333 3.05 | 10.58 0.00 0.833 0.917 0.00 | 4.167 14.25 | 7.417 3.05 | 10.67 1.000 0.00 | 4.250 14.25 | 7.500 3.05 | 10.75 0.00 15.27 | 4.333 14.25 | 7.583 3.05 | 10.83 1.083 15.27 | 4.417 14.25 | 7.667 3.05 | 10.92 1.167 15.27 | 4.500 14.25 | 7.750 3.05 | 11.00 1.250 1.333 15.27 | 4.583 14.25 | 7.833 3.05 | 11.08 1.417 15.27 | 4.667 14.25 | 7.917 3.05 | 11.17 1.500 15.27 | 4.750 14.25 | 8.000 3.05 | 11.25 0.00

15.27 | 4.833 14.25 | 8.083 1.02 | 11.33

25.45 | 5.333 12.22 | 8.583 1.02 | 11.83

14.25 | 8.167 1.02 | 11.42

1.583

1.667

1.750

1.833

1.917

2.000

2.083

15.27 | 4.917

2.16 2.250 2.333 2.41 2.500 2.583 2.66 2.750 2.833 2.91 3.000 3.083 3.16 3.250	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.667 8.750 8.833 9.917 9.000 9.083 9.167 9.250 9.333 9.417 9.500 9.583 9.667 9.750	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11.9212.0012.0812.1712.2512.3312.4212.5012.5812.6712.7512.8312.9213.00	$\begin{array}{c} 0.00\\$
Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE ***** WARNING: STORAG (i) CN PROCEDU CN* = 8 (ii) TIME STEP THAN THE S	nm/hr)= (min) (min)= (cms)= (cms)= (hrs)= (hrs)= (hrs)= (mm)= ENT = GE COEFF. IS JRE SELECTED 37.3 Ia = (DT) SHOULD GTORAGE COEF	25.45 5.00 4.60 0.23 0.11 3.00 100.80 101.80 0.99 5 SMALLER 5 FOR PER 5 DEP. St 5 BE SMAL FICIENT	1 (ii) 1 7 10 R THAN T RVIOUS L torage LER OR	9.12 0.00 8.80 (ii) 0.00 0.12 0.01 4.00 3.23 1.80 0.72 TIME STEP! 0SSES: (Above) EQUAL	*TOT 0. 3 97 101 0	ALS* 118 (iii) .00 .77 .80 .96	
(iii) PEAK FLOW RESERVOIR(0038) IN= 2> OUT= 1 DT= 5.0 min INFLOW : ID= 2 (OUTFLOW: ID= 1 (OVERFLOW:ID= 3 (T(CL	DOES NOT IN OVERFLC OUTFLOW (cms) 0.0000 0.0320 0003) OTAL NUMBER JMULATIVE TI	ICLUDE B W IS ON W IS ON (ha) 0.00 AREA (ha) 1.720 0.000 0F SIMUI	ASEFLOW RAGE .m.) 0000 0450 0450 0.09 0.09 0.00 LATION 0 /ERFLOW	IF ANY. OUTFLOW (cms) 0.0940 0.0000 TPEAK (hrs) .8 3.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0	STO (ha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RAGE .m.) .0600 .0000 R.V. (mm) 97.77 97.56 0.00	
PE T T M/	EAK FLOW IME SHIFT OF XIMUM STOF	REDUCT: PEAK FI AGE US	VERFLOWI LON [Qou LOW SED	NG (%) = t/Qin](%)= (min)= (ha.m.)=	- 0.00 = 78.88 = 65.00 = 0.05	99	

CALIB STANDHYD (0034) TD= 1 DT= 5.0 min	Area Total	(ha)= Tmp(%)=	2.65	Dir. Conn.(%)=	75.00
	locat	-mp(///)			
		IMPERVIO	DUS	PERVIOUS (i)	
Surface Area	(ha)=	1.99	9	0.66	
Dep. Storage	(mm) =	1.00	Ð	1.57	
Average Slope	(%)=	1.00)	2.00	
Length	(m)=	132.92	2	30.00	
Mannings n	=	0.013	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	22.40	6.583	8.14	9.83	0.00
0.167	0.00	3.417	22.40	6.667	8.14	9.92	0.00
0.250	0.00	3.500	22.40	6.750	8.14	10.00	0.00
0.333	0.00	3.583	22.40	6.833	8.14	10.08	0.00
0.417	0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500	0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00	12.75	0.00
3.083	22.40	6.333	8.14	9.583	0.00	12.83	0.00
3.167	22.40	6.417	8.14	9.667	0.00	12.92	0.00
3.250	22.40	6.500	8.14	9.750	0.00	13.00	0.00

Max.Eff.Inten.(mm/hr)= 25.45 18.20

over	(min)	5.00	20.00	
Storage Coeff.	(min)=	5.24 (ii)	16.98 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	20.00	
Unit Hyd. peak	(cms)=	0.21	0.06	
				TOTALS
PEAK FLOW	(cms)=	0.14	0.03	0.169 (iii)
TIME TO PEAK	(hrs)=	3.00	4.00	3.00
RUNOFF VOLUME	(mm)=	100.80	69.26	92.91
TOTAL RAINFALL	(mm)=	101.80	101.80	101.80
RUNOFF COEFFICIE	ENT =	0.99	0.68	0.91

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

_____ | RESERVOIR(0037)| OVERFLOW IS ON | IN= 2---> OUT= 1 | STORAGE STORAGE | DT= 5.0 min | OUTFLOW | OUTFLOW (ha.m.) | (cms) (ha.m.) 0.0000 | 0.0520 0.1800 (cms) 0.1800 0.0000 0.0180 0.1100 | 0.0000 0.0000 CEAK TPEAK AREA QPEAK (ha) (cms) R.V. (hrs) (mm) 3.00 ∠.650 2.650 0.000 INFLOW : ID= 2 (0034) 2.650 0.169 92.91 92.33 OUTFLOW: ID= 1 (0037) 0.050 7.00 0.000 OVERFLOW: ID= 3 (0003) 0.000 0.00 0.00 TOTAL NUMBER OF SIMULATION OVERFLOW = 0 CUMULATIVE TIME OF OVERFLOW (HOURS) = 0.00 PERCENTAGE OF TIME OVERFLOWING (%) = 0.00 FLOW REDUCTION [Qout/Qin](%)= 29.70 PEAK TIME SHIFT OF PEAK FLOW (min)=240.00 MAXIMUM STORAGE USED (ha.m.)= 0.1763 | ADD HYD (0024)|

 + 2 = 3
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ID1= 1 (0029):
 4.21
 0.103
 6.92
 95.22

 + ID2= 2 (0037):
 2.65
 0.050
 7.00
 92.33

 1 + 2 = 3

ID = 3 (0024): 6.86 0.153 7.00 94.10

(ha)

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| ADD HYD (0024)| | 3 + 2 = 1 | AREA QPEAK TPEAK R.V.

(cms) (hrs)

(mm)

+	ID1= 3 (ID2= 2 (0024): 0038):	6.86 1.72	0.153 0.093	7.00 4.08	94.10 97.56	
	ID = 1 (0024):	8.58	0.210	6.08	94.79	
ΝΟΤ	E: PEAK F	LOWS DO NO	T INCLU	DE BASEFLO	WS IF AN	Υ.	
CALIB NASHYD ID= 1 D) (0020)T= 5.0 mir	 9) Area 1 Ia U.H. 1	(ha)= (mm)= Tp(hrs)=	= 1.18 = 4.67 = 0.42	Curve N # of Li	umber (CN)= 60.2 near Res.(N)= 3.00	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORMED) HYETOGR/	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	22.40	6.583	8.14	9.83	0.00
0.167	0.00	3.417	22.40	6.667	8.14	9.92	0.00
0.250	0.00	3.500	22.40	6.750	8.14	10.00	0.00
0.333	0.00	3.583	22.40	6.833	8.14	10.08	0.00
0.417	0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500	0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00	12.75	0.00
3.083	22.40	6.333	8.14	9.583	0.00	12.83	0.00
3.167	22.40	6.417	8.14	9.667	0.00	12.92	0.00
3.250	22.40	6.500	8.14	9.750	0.00	13.00	0.00

(cms)= 0.028 (i) (hrs)= 4.167 PEAK FLOW TIME TO PEAK (mm)= 35.589 RUNOFF VOLUME TOTAL RAINFALL (mm) = 101.800 RUNOFF COEFFICIENT = 0.350 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ -----| CALIB | | NASHYD (0021)| (ha)= 0.43 Curve Number (CN)= 61.9 Area (mm)= 4.67 # of Linear Res.(N)= 3.00 |ID= 1 DT= 5.0 min | Ia U.H. Tp(hrs) = 0.53NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Unit Hyd Qpeak (cms)= 0.107

--- TRANSFORMED HYETOGRAPH ----

		IK/				- 	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	'hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.333	22.40	6.583	8.14	9.83	0.00
0.167	0.00	3.417	22.40	6.667	8.14	9.92	0.00
0.250	0.00	3.500	22.40	6.750	8.14	10.00	0.00
0.333	0.00	3.583	22.40	6.833	8.14	10.08	0.00
0.417	0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500	0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583	0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667	0.00	3.917	22.40	7.167	3.05	10.42	0.00
0.750	0.00	4.000	22.40	7.250	3.05	10.50	0.00
0.833	0.00	4.083	14.25	7.333	3.05	10.58	0.00
0.917	0.00	4.167	14.25	7.417	3.05	10.67	0.00
1.000	0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083	15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167	15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250	15.27	4.500	14.25	7.750	3.05	11.00	0.00
1.333	15.27	4.583	14.25	7.833	3.05	11.08	0.00
1.417	15.27	4.667	14.25	7.917	3.05	11.17	0.00
1.500	15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583	15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667	15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750	15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833	15.27	5.083	12.22	8.333	1.02	11.58	0.00
1.917	15.27	5.167	12.22	8.417	1.02	11.67	0.00
2.000	15.27	5.250	12.22	8.500	1.02	11.75	0.00
2.083	25.45	5.333	12.22	8.583	1.02	11.83	0.00
2.167	25.45	5.417	12.22	8.667	1.02	11.92	0.00
2.250	25.45	5.500	12.22	8.750	1.02	12.00	0.00
2.333	25.45	5.583	12.22	8.833	1.02	12.08	0.00
2.417	25.45	5.667	12.22	8.917	1.02	12.17	0.00
2.500	25.45	5.750	12.22	9.000	1.02	12.25	0.00
2.583	25.45	5.833	12.22	9.083	0.00	12.33	0.00
2.667	25.45	5.917	12.22	9.167	0.00	12.42	0.00
2.750	25.45	6.000	12.22	9.250	0.00	12.50	0.00
2.833	25.45	6.083	8.14	9.333	0.00	12.58	0.00
2.917	25.45	6.167	8.14	9.417	0.00	12.67	0.00
3.000	25.45	6.250	8.14	9.500	0.00	12.75	0.00

3.083 22.40 3.167 22.40 3.250 22.40	6.333 6.417 6.500	8.14 8.14 8.14	9.583 9.667 9.750	0.00 0.00 0.00	12.83 12.92 13.00	0.00 0.00 0.00
Unit Hyd Qpeak (cms)=	0.031	0.14	0.750	0.00	13.00	0.00
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= 3 TOTAL RAINFALL (mm)= 10 RUNOFF COEFFICIENT =	0.010 (1) 4.250 7.216 1.800 0.366					
(i) PEAK FLOW DOES NOT IN	CLUDE BAS	EFLOW I	F ANY.			
CALIB STANDHYD (0108) Area ID= 1 DT= 5.0 min Total I	(ha)= mp(%)= 5	1.57 2.00 I	Dir. Conn	.(%)= 5	52.00	
	IMPERVIOU	S PEI	RVIOUS (i)		
Surface Area (ha)=	0.82		0.75 1 57			
Average Slope (%)=	0.50		0.50			
Length (m)= Mannings n =	102.31 0.013	38	87.00 0.050			
NOTE: RAINFALL WAS T	RANSFORME	D TO S	5.0 MIN.	TIME STE	EP.	
TIME RAIN	TRA	NSFORMEI RAIN	D HYETOGRA ' TIME	APH· RAIN	I TIME	RAIN
hrs mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083 0.00	3.333	22.40	6.583	8.14	9.83	0.00
	3.417	22.40	0.60/	8.14	9.92	Θ . $\Theta \Theta$
0.333 0.00	3.583	22.40	6.833	8.14	10.00	0.00
0.417 0.00	3.667	22.40	6.917	8.14	10.17	0.00
0.500 0.00	3.750	22.40	7.000	8.14	10.25	0.00
0.583 0.00	3.833	22.40	7.083	3.05	10.33	0.00
0.667 0.00	3.917	22.40	7.167	3.05	10.42	0.00
		22.40	7.250 7.222	3.05	10.50	
0.833 0.00	4.003	14.25	7.333	3.05	10.58	0.00
1.000 0.00	4.250	14.25	7.500	3.05	10.75	0.00
1.083 15.27	4.333	14.25	7.583	3.05	10.83	0.00
1.167 15.27	4.417	14.25	7.667	3.05	10.92	0.00
1.250 15.27	4.500	14.25		3.05	11.00	0.00
1.333 15.27 1.417 15.27	4.583	14.25	7.833 7.017	3.05	11.08 11 17	0.00
1.500 15.27	4.750	14.25	8.000	3.05	11.25	0.00
1.583 15.27	4.833	14.25	8.083	1.02	11.33	0.00
1.667 15.27	4.917	14.25	8.167	1.02	11.42	0.00
1.750 15.27	5.000	14.25	8.250	1.02	11.50	0.00
1.833 15.27	5.083 5.167	12.22	8.333 9.417	1.02	11.58	0.00
1.91/ 13.2/ 2 000 15 27	5.10/ 5.250	12.22	0.41/ 8.500	1.02	11.07 11.75	0.00
2.000 13.27	1 3.230	16,22	0.000	1.02	1 11 00	0.00
2.003 23.43	5.333	12.22	8.583	1.02	11.83	0.00

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.45 5.500 5.45 5.583 5.45 5.667 5.45 5.750 5.45 5.833 5.45 5.917 5.45 6.000 5.45 6.083 5.45 6.167 5.45 6.250 2.40 6.333 2.40 6.417 2.40 6.500	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Max.Eff.Inten.(mm/hr over (min Storage Coeff. (min Unit Hyd. Tpeak (min Unit Hyd. peak (cms PEAK FLOW (cms TIME TO PEAK (hrs RUNOFF VOLUME (mm TOTAL RAINFALL (mm RUNOFF COEFFICIENT)= 25.45) 5.00)= 5.51)= 5.00)= 0.20)= 0.06)= 3.00)= 100.80)= 101.80 = 0.99	17.51 40.00 (ii) 37.42 (ii) 40.00 0.03 0.03 4.25 67.76 101.80 0.67	*TOTALS* 0.083 (iii) 4.00 84.93 101.80 0.83	
<pre>(i) CN PROCEDURE SI CN* = 84.1 (ii) TIME STEP (DT) THAN THE STORA (iii) PEAK FLOW DOES</pre>	ELECTED FOR PE Ia = Dep. S SHOULD BE SMA GE COEFFICIENT NOT INCLUDE B	RVIOUS LOSSES: torage (Above) LLER OR EQUAL ASEFLOW IF ANY.		
RESERVOIR(0026) IN= 2> OUT= 1 DT= 5.0 min	OVERFLOW IS ON OUTFLOW STO (cms) (ha 0.0000 0. 0.0060 0.	RAGE OUTFLOW .m.) (cms) 0000 0.0200 0600 0.0000 0PEAK TPEAK	STORAGE (ha.m.) 0.1100 0.0000 R.V	
INFLOW : ID= 2 (0108 OUTFLOW: ID= 1 (0026 OVERFLOW:ID= 3 (0003	(ha)) 1.570) 1.570) 0.000	(cms) (hrs) 0.083 4. 0.019 7. 0.000 0.	(mm) 00 84.93 75 83.31 00 0.00	
TOTAL CUMULA PERCEN	NUMBER OF SIMU TIVE TIME OF O TAGE OF TIME O	LATION OVERFLOW VERFLOW (HOURS) VERFLOWING (%)	$ \begin{array}{rcl} = & 0 \\ = & 0.00 \\ = & 0.00 \\ \end{array} $	
PEAK TIME SI MAXIMUI	HIGW REDUCT HIFT OF PEAK F M STORAGE U	LOW [QOUT/QIN](%) LOW (min) SED (ha.m.)	- 22.40 =225.00 = 0.1051	

| ADD HYD (0025)|

 + 2 = 3
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 1
 (0020):
 1.18
 0.028
 4.17
 35.59

 + ID2= 2
 (0021):
 0.43
 0.010
 4.25
 37.22

 1 + 2 = 3 - - - - - - - - -ID = 3 (0025): 1.61 0.039 4.17 36.02 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0025)|

 + 2 = 1
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 3
 0025):
 1.61
 0.039
 4.17
 36.02

 + ID2= 2
 0026):
 1.57
 0.019
 7.75
 83.31

 3 + 2 = 1 ID = 1 (0025): 3.18 0.046 4.25 59.37 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. FINISH ______

APPENDIX F

Capacity Calculations

F1 – Culvert Master Calculations F2 – Flow Master Calculations

Culvert		n _ Inverts		
Discharge: 6.4992	m³/s	Invert Upstream:	74.78	m
Maximum Allowable HW: 76.88	m	Invert Downstream:	74.43	m
Tailwater Elevation: 0.00	m	Length:	116.90	m
Section		Slope:	0.003003	m/m
Shape: Circular	-	- Headwater Elevation	ons	
Material: CMP	•	Maximum Allowab	le: 76.88	m
Size: 2100 mm	-	Computed Headwat	er: 76.88	m
Number: 1		Inlet Contr	ol: 76.56	m
Mannings: 0.024	-	Outlet Contr	ol: 76.88	m
Inlet		Exit Results		
Entrance: Headwall	•	Discharge: 6.49	92	m³/s
Ke: 0.50		Velocity: 3.11		m/s
,		Depth: 1.21		m

Figure 1: Railway Culvert #1 - Maximum Capacity

Solve For:	eadwater E	evation	•			
Culvert				Inverts		
	Discharge:	5.2600	m³/s	Invert Upstream:	74.78	m
Maximum Allo	wable HW:	76.88	m	Invert Downstream:	74.43	m
Tailwate	r Elevation:	0.00	m	Length:	116.90	m
Section				Slope:	0.003003	m/m
Shape:	Circular		-	- Headwater Elevati	ons	
Material:	CMP		•	Maximum Allowat	ble: 76.88	m
Size:	2100 mm		•	Computed Headwa	ter: 76.60	m
Number:	1			Inlet Cont	rol: 76.34	m
Mannings:	0.024		•	Outlet Cont	rol: 76.60	m
Inlet				Exit Results		
Entrance:	Headwall		-	Discharge: 5.26	00	m³/s
Ke:	0.50			Velocity: 2.89)	m/s
,				Depth: 1.08	}	m

Figure 2: Railway Culvert #1 - Maximum Velocity

Culvert		- Inverts		
Discharge: 1.2999	m³/s	Invert Upstream	75.36	m
Maximum Allowable HW: 76.41	m	Invert Downstream	75.28	m
Tailwater Elevation: 0.00	m	Length	15.90	m
Section		Slope	0.005031	m/m
Shape: Circular	•	- Headwater Elevat	tions	
Material: Concrete	•	Maximum Allowa	ble: 76.41	m
Size: 1050 mm	•	Computed Headwa	ater: 76.41	m
Number: 1		Inlet Con	trol: 76.34	m
Mannings: 0.013	-	Outlet Con	trol: 76.41	m
Inlet		Exit Results		
Entrance: Square edge w/headwall	•	Discharge: 1.2	999	m³/s
Ke: 0.50		Velocity: 2.4	0	m/s
,		Depth: 0.6	2	m

Figure 3: Railway Culvert #2 - Maximum Capacity

Culvert		Inverts		
Discharge: 0.9900	m³/s	Invert Upstream:	75.36	m
Maximum Allowable HW: 76.41	m	Invert Downstream:	75.28	m
Tailwater Elevation: 0.00	m	Length:	15.90	m
Section		Slope:	0.005031	m/m
Shape: Circular	•	Headwater Elevatio	ns	
Material: Concrete	-	Maximum Allowabl	e: 76.41	m
Size: 1050 mm	-	Computed Headwate	er: 76.25	m
Number: 1		Inlet Contro	ol: 76.18	m
Mannings: 0.013	•	Outlet Contro	ol: 76.25	m
Inlet		Exit Results		
Entrance: Square edge w/headwal	•	Discharge: 0.990	0	m³/s
Ke: 0.50		Velocity: 2.24		m/s
,		Depth: 0.53		m

Figure 4: Railway Outlet #2 - Maximum Velocity

Solve For: Discharge	-			E
Culvert		Inverts		
Discharge: 11.3513	m³/s	Invert Upstream:	70.24	m
Maximum Allowable HW: 72.20	m	Invert Downstream:	9.75	m
Tailwater Elevation: 0.00	m	Length: 4	6.10	m
Section		Slope:	0.010629	m/m
Shape: Horizontal Ellipse	•	Headwater Elevation	15	
Material: Concrete	-	Maximum Allowable	e: 72.20	m
Size: 1960 x 3060 mm	-	Computed Headwate	r: 72.20	m
Number: 1		Inlet Contro	I: 72.13	m
Mannings: 0.024	•	Outlet Contro	I: 72.20	m
Inlet		Exit Results		
Entrance: Groove end with headwall (horizontal -	Discharge: 11.35	13	m³/s
Ke: 0.20		Velocity: 3.49		m/s
,		Depth: 1.23		m

Figure 5: Railway Outlet #3 - Maximum Capacity

uivert		Inverts		
Discharge: 3.1100	m³/s	Invert Upstream:	70.24	m
aximum Allowable HW: 72.20	m	Invert Downstream:	69.75	m
Tailwater Elevation: 0.00	m	Length:	46.10	m
ection		Slope:	0.010629	m/m
Shape: Horizontal Ellipse	-	Headwater Elevation	ns	
Material: Concrete	-	Maximum Allowab	e: 72.20	m
Size: 1960 x 3060 mm	-	Computed Headwate	er: N/A	m
Number: 1		Inlet Contr	ol: N/A	m
Mannings: 0.024	•	Outlet Contr	ol: N/A	m
let		Exit Results		
Entrance: Groove end with head	wall (horizontal 💌	Discharge: 3.110	0	m³/s
Ke: 0.20		Velocity: 0.96		m/s

Figure 6 Railway Outlet #3 - Maximum Velocity

Solve For: Discharg	e	•			
Culvert			Inverts		
Discha	arge: 0.2735	m³/s	Invert Upstream:	75.90	m
Maximum Allowable	HW: 76.50	m	Invert Downstream:	75.30	m
Tailwater Eleva	tion: 0.00	m	Length:	12.00	m
Section			Slope:	0.050000	m/m
Shape: Circul	ar	•	Headwater Elevation	ons	
Material: CMP		•	Maximum Allowab	le: 76.50	m
Size: 600 m	ım	•	Computed Headwat	er: 76.50	m
Number: 1			Inlet Cont	rol: 76.43	m
Mannings: 0.024		•	Outlet Cont	rol: 76.50	m
Inlet			Exit Results		
Entrance: Project	ting	-	Discharge: 0.27	35	m³/s
Ke: 0.90	-		Velocity: 2.43		m/s
,			Depth: 0.25		m

Figure 7: Street B - Maximum Capacity

Culvert				
Discharge: 0.0500	m³/s	Invert Upstream:	75.90	m
Maximum Allowable HW: 76.50	m	Invert Downstream:	75.30	m
Tailwater Elevation: 0.00	m	Length:	12.00	m
Section		Slope:	0.050000	m/m
Shape: Circular	-	Headwater Elevation	ns	
Material: CMP	•	Maximum Allowab	le: 76.50	m
Size: 600 mm	•	Computed Headwate	er: 76.13	m
Number: 1		Inlet Contr	ol: 76.08	m
Mannings: 0.024	•	Outlet Contr	ol: 76.13	m
nlet		Exit Results		
Entrance: Projecting	•	Discharge: 0.050	00	m³/s
Ke: 0.90		Velocity: 1.49		m/s
,		Depth: 0.10		m

Figure 8: Street B - Maximum Velocity

VO Output Results of the 4hr 25 mm Chicago Storm for the proposed ditches and swales for Phase A.

					4hr Chicago		
				Aroa	25mm		
Swale Category		VO	Catchment	Aled	Runoff Vol	Discharge	
				ha	mm	cms	
Wast Ditch	Enhanced /	105F	Uncontrolled	5.37	21.36	0.491	
west blich	Storage	RR105F	Controlled	5.37	21.06	0.015	
East Ditch	Enhanced /	107F_1	Uncontrolled	4.21	20.77	0.379	
Easi Diich	Storage	RR107F_1	Controlled	4.21	20.5	0.016	
Street B	Convovanco	107F_2	Uncontrolled	1.53	22.36	0.214	
Ditch	Conveyance	RR107F_2	Controlled	1.53	22.16	0.019	
North Swalo	Enhancod	108F	Uncontrolled	1.57	16.15	0.109	
Norm Swale	Ennancea	RR108F	Controlled	1.57	14.53	0.002	
South Swale	Conveyance	108F_EX2	Uncontrolled	0.43	2.337	0.002	

The east and west trapezoidal ditch and north swale have been modelling Flowmaster to assess whether the velocity of the stormwater flowing through these swales provides water quality benefits.

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.00100	m/m
Left Side Slope	3.00	m/m (H:V)
Right Side Slope	3.00	m/m (H:V)
Bottom Width	10.00	m
Discharge	0.015	m³/s
Results		
Normal Depth	0.02	m
Flow Area	0.20	m²
Wetted Perimeter	10.12	m
Hydraulic Radius	0.02	m
Top Width	10.12	m
Critical Depth	0.01	m
Critical Slope	0.04812	m/m
Velocity	0.08	m/s
Velocity Head	0.00	m
Specific Energy	0.02	m
Froude Number	0.17	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	m
Length	0.00	m
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Downstream Velocity	Infinity	m/s
Upstream Velocity	Infinity	m/s
Normal Depth	0.02	m
Critical Depth	0.01	m
Channel Slope	0.00100	m/m

Bentley Systems, Inc. Haestad Methods SoluBiantl@efitenvMaster V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

GVF Output Data

Critical Slope

0.04812 m/m

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Innut Data		
input Dutu		
Roughness Coefficient	0.030	
Channel Slope	0.00300	m/m
Left Side Slope	3.00	m/m (H:V)
Right Side Slope	3.00	m/m (H:V)
Bottom Width	10.00	m
Discharge	0.016	m³/s
Results		
Normal Depth	0.01	m
Flow Area	0.15	m²
Wetted Perimeter	10.09	m
Hydraulic Radius	0.01	m
Top Width	10.09	m
Critical Depth	0.01	m
Critical Slope	0.04755	m/m
Velocity	0.11	m/s
Velocity Head	0.00	m
Specific Energy	0.02	m
Froude Number	0.29	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	m
Length	0.00	m
Number Of Steps	0	
GVF Output Data		
Linstream Denth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Downstream Velocity	Infinity	m/s
Unstream Velocity	Infinity	m/s
Normal Depth	0.01	m
Critical Depth	0.01	m
Channel Slope	0.00300	 m/m
Channel Clope	0.0000	

Bentley Systems, Inc. Haestad Methods SoluBiantl@efitenvMaster V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

GVF Output Data

Critical Slope

0.04755 m/m

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.00100	m/m
Left Side Slope	3.00	m/m (H:V)
Right Side Slope	3.00	m/m (H:V)
Bottom Width	10.00	m
Discharge	0.016	m³/s
Results		
Normal Depth	0.02	m
Flow Area	0.20	m²
Wetted Perimeter	10.13	m
Hydraulic Radius	0.02	m
Top Width	10.12	m
Critical Depth	0.01	m
Critical Slope	0.04744	m/m
Velocity	0.08	m/s
Velocity Head	0.00	m
Specific Energy	0.02	m
Froude Number	0.18	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	m
Length	0.00	m
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Downstream Velocity	Infinity	m/s
Upstream Velocity	Infinity	m/s
Normal Depth	0.02	m
Critical Depth	0.01	m
Channel Slope	0.00100	m/m

Bentley Systems, Inc. Haestad Methods SoluBiantl@efitenvMaster V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

GVF Output Data

Critical Slope

0.04744 m/m

Worksheet for North Swale Cross Section 4

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.01200	m/m
Left Side Slope	3.00	m/m (H:V)
Right Side Slope	3.00	m/m (H:V)
Bottom Width	2.00	m
Discharge	0.002	m³/s
Results		
Normal Depth	0.01	m
Flow Area	0.01	m²
Wetted Perimeter	2.05	m
Hydraulic Radius	0.01	m
Top Width	2.04	m
Critical Depth	0.00	m
Critical Slope	0.05297	m/m
Velocity	0.14	m/s
Velocity Head	0.00	m
Specific Energy	0.01	m
Froude Number	0.51	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	m
Length	0.00	m
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Downstream Velocity	Infinity	m/s
Upstream Velocity	Infinity	m/s
Normal Depth	0.01	m
Critical Depth	0.00	m
Channel Slope	0.01200	m/m

Bentley Systems, Inc. Haestad Methods SoluBiantl@efitewMaster V8i (SELECTseries 1) [08.11.01.03]

2021-10-20 4:38:46 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for North Swale Cross Section 4

GVF Output Data

Critical Slope

0.05297 m/m

APPENDIX G

Existing Culvert Capacities Memo

EXISTING CULVERT CAPACITIES MEMO

DATE	November 1, 2021	PROJECT NO.	1909-5629
RE	Long Sault Logistics Village Existing Culvert Capacities		
то	Jennifer Murray, P.Eng. MBA		
FROM	Tony Elias, P.Eng. Josh Wagemaker, E.I.T.		

The purpose of this memorandum is to confirm the capacities of the existing railway culverts located on the south side of the Long Sault Business Park (the Site). There are three culverts which require analysis. The information for the existing culverts is shown below:

Table 1: Canadian National Railway Culverts										
	Railway Outlet #1	Railway Outlet #2	Railway Outlet #3							
Material	Corrugated Steel	Corrugated Steel	Corrugated Steel							
Shape	Circular	Circular	Horizontal Ellipse							
Dimensions (m)	2.15	0.90	2 x 3							
Length (m)	26	39	39							
Inlet Invert (masl)	74.71	74.21	69.24							
Outlet Invert (masl)	74.70	72.98	69.20							

..... - ·

It was noted during field inspection that Railway Outlet #2 has a significant drop between the inlet and outlet elevations, potentially due to settlement. This culvert is under review by Canadian Nation Railway (CNR) to determine the appropriate course of action.

A Visual Otthymo (VO) hydrologic model was created to estimate the peak flows at each culvert based on the runoff generated from an AES 30% Southern Ontario 12-hour storm distribution. The VO model captures the drainage area within the Site as well as the external drainage areas contributing to the Site from outside the property boundaries. Drainage areas were delineated based on a surface prepared from Light Detection and Ranging (LiDAR) data. A schematic of the VO model is shown below:

The material in this memo reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Figure 1: Visual Otthymo Model Schematic

VO model parameters were calculated for each drainage area based on the requirements outlined in the Site Plan & Subdivision Guidelines (June 2015) prepared by the Township of South Stormont. Modelling guidelines are listed below:

- Soil Conservations Service (SCS) Curve Number (CN) method shall be used during modelling to accurately represent the land use, soil, and antecedent moisture conditions present within the development area.
- Depression storage, or initial abstraction values shall be 1.57 mm for impervious areas and 4.67 mm for pervious areas.
- For developments larger than 15 hectares and/or drainage systems that are more complex, a computer model shall be created using approved software.
- The AES 30 % Southern Ontario 12-hour storm distribution shall be used in sizing stormwater storage facilities.

Upland's Method was used to calculate the Time to Peak parameter of each drainage area. Upland's Method considers the overland slope and landcover for each catchment. The method is ideal for larger drainage areas like those delineated for the Site.

Hydrologic parameters used by the model were calculated based on soils, land use, and contour data. Soil data was collected from the Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA) Soil Survey Complex. Land use was determined based on the review of aerial imagery and wetland features delineated by Bowfin Environmental. Attachment I contains detailed calculations of the hydrologic parameters. Drainage area parameters are summarized in Table 2.

Drainage Area	Area (ha)	Curve Number	Initial Abstraction	Time to Peak
DA-1	33.97	66.8	4.67	1.64
DA-2	81.91	60.9	4.67	1.64
DA-3	20.32	54.5	4.67	2.5
DA-4	38.38	52.9	4.67	4.84
DA-5	40.85	59.1	4.67	2.7
DA-6	22.68	60	4.67	1.81
DA-7	57.61	56.4	4.67	3.53
DA-8	56.87	64.3	4.67	3.53
401A	60.47	63	4.67	3.53
401-B	57.68	61.6	4.67	1.37
401-C	24.59	66.2	4.67	0.74
401-D	44.86	67.1	4.67	1.65
Avonmore-A	14.34	55.3	4.67	1.05
Avonmore-B	171.62	68.1	4.67	4.18

Table 2:	Existing	Drainage	Area	Parameters

The Visual Otthymo model was run using the 100-year AES 30 % Southern Ontario – 12-hour storm distribution and peak flows were generated at the location of each CNR culvert. The 100-year peak flows for each culvert are summarized in Table 3.

Table 3 – CNR Peak Flows, 100-Year AES 30 % Southern Ontario – 12-hour Distribution

	Railway Outlet #1	Railway Outlet #2	Railway Outlet #3
Peak Flow (m³/s)	5.26	0.99	3.11

Culvert hydraulics were analyzed using CulvertMaster design software. Culvert properties described in Table 1 were input into CulvertMaster. Culvert capacities were determined assuming that the headwater elevation of each culvert will not rise above the obvert of the corresponding inlet pipe (no surcharge). CulvertMaster output data is found in Attachment II. A summary of the culvert capacities is shown in Table 4.

Table 4 – CNR Culvert Existing Capacities

	Railway Outlet #1	Railway Outlet #2	Railway Outlet #3
Peak Flow (m ³ /s)	6.75	0.75	11.57

Based on the above results, Railway Outlet #1 and Railway Outlet #3 meet the capacity requirements. Railway Outlet #2 does not have enough capacity to convey the existing 100-year flow. A 1050 mm corrugated steel pipe with a capacity of 1.11 m³/s would satisfy the 100-year flow requirement. Analysis of the proposed culvert capacity is found in Attachment II.

The conditions at Railway Outlet #1 and Railway Outlet #3 are acceptable; thus, no changes are recommended at these locations. While deciding on an appropriate course of action for the possible settlement issues at Railway Outlet #2, CNR should also consider increasing the pipe size from a 900 mm to 1050 mm.

Sincerely,

C.F. CROZIER & ASSOCIATES INC.

Tony Elias, P.Eng. Senior Project Manager

JW/stm

I:\1900\1909 - Avenue 31\5629_Long Sault Bus Pk\Memos\Existing Culvert Capacities Memo\2021.11.01 Existing_Culvert_Capacities_Memo.docx

ATTACHMENT |

Model Parameter Calculations – Visual Otthymo

D.A. D.A.

DA-1

34.0

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment DA-1

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
	-	В	70%	23.7
	-	D	28%	9.5
	-	С	2%	0.8
Total Area				34.0

Impervious Landuses Present:												
	Roadv	vay	Sidew	alk	Driveway		Building		SWMF		Subtotals	
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	2.153	98	0	98	0	98	0.0	98	0	98	2.153	210.994
D	0.079	98	0	98	0	98	0.0	98	0	98	0.079	7.742
C	0.014	98	0	98	0	98	0.0	98	0	98	0.014	1.372
Subtotal Area	2.246		0		0		0.0		0			

Pervious Land	uses Presen	t:											
	Wood	Woodland Mead		dow Wetland		and	Lawr	ו	Cultivated		Sub	Subtotals	
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN	
B	14.95	60	0.00	65	2.77	50	3.76	69	0.00	74	21.48	1294.95	
D	8.79	79	0.00	81	0.66	50	0.00	84	0.00	86	9.45	727.73	
C	0.79	32	0.00	38	0.00	50	0.00	49	0.00	62	0.79	25.31	
Subtotal Area	24.54		0.00		3.43		3.76		0.00				
							Total Pervio	us Area	l		31.73		
				С	omposite A	rea	Total Imperv	vious Ar	ea		2.246		
					Calculation	s	% Imperviou	ls			6.61%		
							Composite (Curve N	umber		66.8		
	Total Area Check 33.97												

Initial Abstraction and Tp Calculations

	nitial Abstra	iction					Composite I	Runoff C	oefficient			
Landuse	IA (mm)	Area	A * IA									
Landdoo	<i>b</i> (((((((((((((((((((((((((((((((((((((ha)	<i>/ / /</i>	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	24.537	245.37	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	3.432	54.912	0.05						0.05		0
Lawn	5	3.757	18.785	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	2.246	4.492	0.95						0.95		0
Composite IA	4.67*	33.972	9.52428	Compos	ite Runoff	Coefficien	t					0
Initial abstrac	ction is 4.67	mm bas	ed on Tow	nship gui	idelines.							

	Time to Peak Inputs							Uplands			Airport	
Flow Path		Drop	Slope	V/C ^{0.5}	Velocity	To (br)	Tn/hr)	TOTAL	To (br)	Tn(hr)	To (br)	Tn/hr)
Description		(m)	(%)	V/5	(m/s)	10 (III)	1 p(11)	Tp (hr)	10 (III)	1 p(iii)	10(11)	1 p(11)
Concentrated	1144.12	8	0.7%	1.5547	0.13	2.44	1.6379496	1.64	NA	NA	NA	NA

Appropriate calculated time to peak: 1.64 Appropriate Method: Uplands

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. DA-2 D.A. 81.9

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment DA-2

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
	-	В	64%	52.2
	-	D	22%	18.1
	-	BC	14%	11.6
Total Area				81.9

Impervious La	nduses Pre	esent:										
	Road	way	Sidew	/alk	Drive	way	Buildir	ng	SWM	1F	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0.661	98	0	98	0	98	0.0	98	0	98	0.661	64.778
D	0	98	0	98	0	98	0.0	98	0	98	0	0
BC	1.892	98	0	98	0	98	0.0	98	0	98	1.892	185.416
Subtotal Area	2.553		0		0		0.0		0			
Pervious Land	luses Prese	ent:										
	Woodland Meade		ow Wetland		Lawn		Cultivated		Sub	ototals		
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	44.23	60	0.00	65	7.46	50	0.00	69	0.00	74	51.70	3027.13
D	13.886	79	0.00	81	4.10	50	0.00	84	0.00	86	17.99	1302.14
BC	4.15	32	0.00	38	5.53	50	0.00	49	0.00	62	9.67	408.99
Subtotal Area	62.27		0.00		17.09		0.00		0.00			
							Total Pervio	us Area	a		79.36	
				Composite Area Total Impervious Area						2.553		
				Calculations % Impervious						3.12%		
				Composite Curve Number							60.9	
Total Area Check 81 G										81 91		

Initial Abstraction and Tp Calculations

I	nitial Abstra	action					Composite I	Runoff C	oefficient				
Landuse	IA (mm)	Area	Δ * ΙΔ										
Lanuuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC	
Woodland	10	62.267	622.67	0.08						0.08		0	
Meadow	8	0	0	0.10						0.10		0	
Wetland	16	17.091	273.456	0.05						0.05		0	
Lawn	5	0	0	0.18						0.18		0	
Cultivated	7	0.00	0.00	0.22						0.22		0	
Impervious	2	2.553	5.106	0.95						0.95		0	
Composite IA	4.67*	81.911	11.0026	Compos	Composite Runoff Coefficient								
Initial abstraction is 4.67 mm based on Township guidelines.													

Time to Peak Inputs Uplands Bransby Williams Airport Flow Path Length Drop Slope Velocity TOTAL V/S^{0.5} Tc (hr) Tc (hr) Tp(hr) Tc (hr) Tp(hr) Tp(hr) Description (m) (m) (%) (m/s) Tp (hr) Concentrated 1144.12 8 0.7% 1.5547 0.13 1.6379496 1.64 NA NA NA NA 2 4 4

Appropriate calculated time to peak: 1.64 Appropriate Method: Uplands

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. D.A. DA-3 20.3

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment DA-3

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
		В	60%	12.1
		BC	40%	8.2
Total Area				20.324

Impervious Lar	nduses Pres	ent:										
	Roadv	vay	Sidew	alk	Drive	way	Buildir	ng	SWN	/IF	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
- B	0	98	0	98	0	98	0.0	98	0	98	0	0
- BC	2.213	98	0	98	0	98	0.0	98	0	98	2.213	216.874
Subtotal Area	2.213		0		0		0.0		0			
Pervious Land	uses Presen	lt:										
	Woodl	and	Mead	ow	Wetl	and	Lawn		Cultivated		Subtotals	
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
- B	5.46	60	0.00	65	5.83	50	0.66	69	0.00	74	11.95	664.78
- BC	4.58	32	0.00	38	1.08	50	0.49	49	0.00	62	6.16	225.00
Subtotal Area	10.04		0.00		6.91		1.16		0.00			
							Total Pervio	us Area	a		18.111	
				Composite Area			Total Imperv	vious A	rea		2.213	
				Calculations			% Impervious				10.89%	
				Composite Curve Number							54.5	
							Total Area C	heck			20.324	

Initial Abstraction and Tp Calculations

lı İ	nitial Abstra	action					Composite	Runoff C	Coefficient			
Landuse	IA (mm)	Area	Δ * ΙΔ									
Landuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	10.043	100.43	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	6.913	110.608	0.05						0.05		0
Lawn	5	1.155	5.775	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	2.213	4.426	0.95						0.95		0
Composite IA	4.67*	20.324	10.8856	Compos	ite Runoff	Coefficier	nt					0
Initial abstraction	on is 4.67 n	nm basec	l on Towns	hip guide	elines.							
	Tim	e to Peak	Inputs				Uplands		Bransby	Williams	Air	port
Flow Path	Length	Drop	Slope	V/C ^{0.5}	Velocity	To (br)	Tn(hr)	TOTAL	To (br)	Tn(hr)	To (br)	Tn(hr)
Description	(m)	(m)	(%)	V/5	(m/s)	10 (11)	1 p(iii)	Tp (hr)	10 (11)	1 p(iii)	10(11)	1 p(11)
Concentrated	645 32	2	0.1%	1 5825	0.05	3 73	2 5021088	2 50	NA	NA	NA	NA
Concontratou	010.02	-	0.170	1.0020	0.00	0.10	2.0021000	2.00	101			
	A		4	a s a la	0.50	A			Lista			
	Appropriate calculated time to					Appropria	ale iviethod:		Ubla	nas		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. D.A. DA-4 38.4

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment DA-4

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
		В	78%	30.0
		BC	22%	8.4
Total Area				38.377

Impervious Lar	nduses Pres	ent:																		
	Roadv	vay	Sidew	alk	Drive	way	Buildir	ıg	SWN	1F	Sub	totals								
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN								
- B	0.274	98	0	98	0	98	0.0	98	0	98	0.274	26.852								
- BC	1.164	98	0	98	0	98	0.0	98	0	98	1.164	114.072								
Subtotal Area	1.438		0		0		0.0		0											
Pervious Land	uses Presen	nt:																		
	Woodl	and	Mead	ow	Wetl	and	Lawn		Cultivated		Sub	totals								
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN								
- B	11.52	60	0.00	65	17.59	50	0.66	69	0.00	74	29.77	1616.01								
- BC	4.72	32	0.00	38	1.96	50	0.49	49	0.00	62	7.17	273.12								
Subtotal Area	16.24		0.00		19.55		1.16		0.00											
							Total Pervio	us Area	a		36.939									
				Composite Area			Total Imperv	vious A	rea		1.438									
					Calculation	s	% Impervious				3.75%									
				Composite Curve Number							52.9									
							Total Area C	heck			38.377	Total Area Check 38.377								

Initial Abstraction and Tp Calculations

	nitial Abstra	action					Composite	Runoff C	Coefficient			
Landuse	IA (mm)	Area (ha)	A * IA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	16.239	162.39	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	19.545	312.72	0.05						0.05		0
Lawn	5	1.155	5.775	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	1.438	2.876	0.95						0.95		0
Composite IA	4.67*	38.377	12.6055	Compos	ite Runoff	Coefficier	nt					0
Initial abstraction	on is 4.67 r	nm based	d on Towns	ship guide	elines.							
	Tim	e to Peal	Inputs				Uplands		Bransby	Nilliams	Air	port
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Concentrated	1248	2	0.1%	1.5825	0.05	7.22	4.8388889	4.84	NA	NA	NA	NA
	Appropriat	te calcula	ted time to	neak:	1 8/	Appropria	ate Method		Linia	nds		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

D.A. DA-5 D.A.

40.9

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment DA-5

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
	-	В	93%	38.2
	-	D	1%	0.3
	-	CD	6%	2.3
Total Area				40.9

Impervious La	nduses Pre	sent:										
	Road	way	Sidew	alk	Drive	way	Buildir	ng	SWM	1F	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0	98	0	98	0	98	0.0	98	0	98	0	0
D	0	98	0	98	0	98	0.0	98	0	98	0	0
CD	0	98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area	0		0		0		0.0		0			
Pervious Land	uses Prese	nt:										
	Wood	and	Mead	ow	Wetla	and	Lawr	۱	Cultiva	ited	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	34.10	60	0.00	65	4.07	50	0.00	69	0.00	74	38.17	2249.23
D	0.314	79	0.00	81	0.02	50	0.00	84	0.00	86	0.33	25.81
CD	1.33	67	0.00	71	1.02	50	0.00	74	0.00	78	2.35	140.31
Subtotal Area	35.75		0.00		5.11		0.00		0.00		1	
							Total Pervio	us Area	1		40.85	
				C	omposite A	rea	Total Imperv	/ious Ar	ea		0	
				Calculations %			% Imperviou	IS			0.00%	
				Composite Curve Number						59.1		
							Total Area C	Check			40.85	

Initial Abstraction and Tp Calculations

I	nitial Abstra	action					Composite I	Runoff C	oefficient			
Landuse	IA (mm)	Area	Δ * ΙΔ									
Landuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	35.745	357.45	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	5.107	81.712	0.05						0.05		0
Lawn	5	0	0	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	0	0	0.95						0.95		0
Composite IA	4.67*	40.852	10.7501	Compos	ite Runoff	Coefficient	t					0
Initial abstraction is 4.67 mm based on Township guidelines												

	Time to Peak Inputs						Uplands			Bransby Williams		port
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)		Tp(hr)
Concentrated	1015.5	5	0.5%	0.9976	0.07	4.03	2.6999511	2.70	NA	NA	NA	NA

2.70 Appropriate Method: Uplands Appropriate calculated time to peak:

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. D.A. DA-6 22.7

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment DA-6

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
Sandy Loam	-	В	100%	22.7
Total Area				22.684

Impervious La	nduses Pre	sent:										
	Road	way	Sidew	alk	Drive	way	Buildir	ng	SWMF		Subtotals	
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0	98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area	0		0		0		0.0		0			
Pervious Land	uses Prese	nt:										
	Wood	land	Mead	ow	Wetland		Lawn (Cultiva	ited	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	22.68	60	0.00	65	0.00	50	0.00	69	0.00	74	22.68	1361.04
Subtotal Area	22.68		0.00		0.00		0.00		0.00			
							Total Pervio	us Area			22.684	
				C	Composite A	rea	Total Imperv	vious Ar	ea		0	
				Calculations			% Imperviou	IS			0.00%	
				Composite Curve Number						60.0		
	Total Area Check 22.684											

Initial Abstraction and Tp Calculations

r	nitial Abetr	action					Composite I		oofficient			
¹				Cand			Composite i		Demicient			
Landuse	IA (mm)	Area	A*IA	Sano	y Loam						-	
	()	(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	22.684	226.84	0.08								0
Meadow	8	0	0	0.10								0
Wetland	16	0	0	0.05								0
Lawn	5	0	0	0.18								0
Cultivated	7	0.00	0.00	0.22								0
Impervious	2	0	0	0.95								0
Composite IA	4.67*	22.684	10	Compos	ite Runoff	Coefficien	t					0
Initial abstraction	on is 4.67 r	mm based	d on Towns	hip guide	elines.							
	Tin	ne to Pea	k Inputs				Uplands		Bransby	Williams	Ai	rport
Flow Path	Length	Drop		Nuc 0 5	Velocity	T = (h = r)	T (l)	TOTAL	T = (l+ =)	T (h)	T = (h =)	T., (l)
Description	(m)	(m)	Slope (%)	V/S ^{olo}	(m/s)	IC (nr)	i p(nr)	Tp (hr)	IC (nr)	i p(nr)	IC (nr)	i p(nr)
Concentrated	679 399	11	1.6%	0 5501	0.07	2 70	1 8063386	1 81	NA	NA	NA	NA
	0101000			0.0001	0.01							
	Appropriate calculated time to peak:					Appropria	ate Method:		Upla	nds		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

DA-7 57.6

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment DA-7

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
Sandy Loam	-	В	100%	57.6
Total Area				57.611

Impervious La	nduses Pre	sent:										
	Road	way	Sidew	alk	Drive	way	Building		SWMF		Subtotals	
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0	98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area	0		0		0		0.0		0			
Pervious Land	uses Prese	nt:										
	Wood	land	Mead	ow	Wetla	and	Lawn C		Cultiva	ited	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	35.70	60	0.00	65	21.32	50	0.59	69	0.00	74	57.61	3248.76
Subtotal Area	35.70		0.00		21.32		0.59		0.00			
							Total Pervio	us Area			57.611	
				C	Composite A	rea	Total Imperv	vious Ar	ea		0	
					Calculation	s	% Imperviou	IS			0.00%	
				Composite Curve Number 5							56.4	
	Total Area Check 57.611											

Initial Abstraction and Tp Calculations

· · · · · ·	nitial Abstr	action					Composite I	Runoff C	oefficient			
		Area		Sand	v Loam		Compositor		oomolom			
Landuse	IA (mm)	(ha)	A ^ IA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	35.702	357.02	0.08								0
Meadow	8	0	0	0.10								0
Wetland	16	21.32	341.12	0.05								0
Lawn	5	0.589	2.945	0.18								0
Cultivated	7	0.00	0.00	0.22								0
Impervious	2	0	0	0.95								0
Composite IA	4.67*	57.611	12.1693	Compos	ite Runoff	Coefficien	t					0
Initial abstracti	on is 4.67 r	nm base	d on Towns	hip guide	elines.							
	Tin	າe to Pea	k Inputs				Uplands		Bransby	Williams	Ai	rport
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Concentrated	1517	15	1.0%	0.8045	0.08	5.27	3.5291319	3.53	NA	NA	NA	NA
	Appropriat		ted time to	neak:	3 53	Approprie	ate Method:		Linia	nde		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. D.A.

DA-8
56.9

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment DA-8

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
	-	В	86%	49.1
	-	D	2%	1.4
	-	CD	11%	6.4
Total Area				56.9

Impervious La	nduses Pres	sent:										
	Road	way	Sidew	alk	Drive	way	Buildir	ıg	SWM	1F	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0	98	0	98	0	98	0.0	98	0	98	0	0
D	0	98	0	98	0	98	0.0	98	0	98	0	0
CD	0	98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area	0		0		0		0.0		0			
Pervious Land	uses Preser	nt:										
	Woodland Meadow Wetland Lawn Cultivated										Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	32.86	60	0.00	65	0.00	50	16.12	69	0.00	74	48.98	3083.84
D	0.491	79	0.00	81	0.00	50	0.96	84	0.00	86	1.45	119.51
CD	3.15	67	0.00	71	0.00	50	3.29	74	0.00	78	6.44	454.46
Subtotal Area	36.50		0.00		0.00		20.37		0.00		1	
							Total Pervio				56.97	
				C	omnosite A	roa	Total Impen		1 200		0.07	
				C					ea			
				Calculations							0.00%	
									redmu		64.3	
	Total Area Check 56.87											

Initial Abstraction and Tp Calculations

li li	nitial Abstra	action					Composite F	Runoff C	oefficient			
Landuse	$I\Delta (mm)$	Area	Δ * ΙΔ									
Landuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	36.501	365.01	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	0	0	0.05						0.05		0
Lawn	5	20.37	101.85	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	0	0	0.95						0.95		0
Composite IA	4.67*	56.871	8.2091	Compos	ite Runoff	Coefficier	nt					0
Initial abstraction	on is 4.67 n	nm basec	l on Towns	ship guide	elines.							
	Tim	e to Peak	(Inputs				Uplands		Bransby	Williams	Aiı	rport
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Concentrated	1442.23	13	0.9%	0.8005	0.08	5.27	3.5317718	3.53	NA	NA	NA	NA

Appropriate calculated time to peak: 3.53 Appropriate Method: Uplands

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. D.A. 401A 60.5

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 401A

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
Sandy Loam	-	В	86%	52.3
Sandy Loam		A	14%	8.2
Total Area	,			60.465

Impervious La	nduses Pre	sent:										
	Road	way	Sidew	/alk	Drive	way	Buildir	ng	SWM	1F	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	2.159	98	0	98	0	98	0.0	98	0	98	2.159	211.582
- A	0	98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area	2.159		0		0		0.0		0			
Pervious Land	uses Prese	ent:										
	Wood	land	Mead	ow Wetland Lawn Cultivated							Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	28.17	60	0.00	65	0.00	50	15.90	69	6.17	74	50.24	3243.98
- A	2.39	32	0.00	38	0.00	50	5.68	49	0.00	62	8.06	354.56
Subtotal Area	30.56		0.00		0.00		21.58		6.17			
							Total Pervio	us Area	1		58.306	
				C	Composite A	rea	Total Imperv	/ious Ai	ea		2.159	
					Calculation	s	% Imperviou	IS			3.57%	
							Composite (Curve N	lumber		63.0	
							Total Area C	Check			60.465	

Initial Abstraction and Tp Calculations

	nitial Abstr	action					Composite I	Runoff C	oefficient			
'		Aree					Composite	tunion O	ocmoloni	Candy	Loom	
Landuse	IA (mm)	Area	A * IA							Sanuy	Loam	
	()	(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	30.558	305.58	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	0	0	0.05						0.05		0
Lawn	5	21.576	107.88	0.18						0.18		0
Cultivated	7	6.17	43.20	0.22						0.22		0
Impervious	2	2.159	4.318	0.95						0.95		0
Composite IA	4.67*	60.465	7.62395	Compos	ite Runoff	Coefficier	nt					0
Initial abstracti	on is 4.67	mm base	d on Town	ship guid	elines.							
	Tin	ne to Peal	k Inputs				Uplands		Bransby	Williams	Air	port
Flow Path	Length	Drop	Slope	VUC0.5	Velocity	To (br)	Tn(hr)	TOTAL	To (br)	Tn(hr)	To (hr)	Tn(hr)
Description	(m)	(m)	(%)	V/S***	(m/s)	10 (nr)	1 p(nr)	Tp (hr)	10 (nr)	1 p(nr)	10 (nr)	ip(ni)
Concentrated	1517	15	1.0%	0 8045	0.08	5 27	3 5291319	3 53	NA	NA	NA	NA
Concontration	.011	.0		0.0010	0.00	0.21	0.0201010	0.00				
	Annronria	te calcula	ted time to	neak:	3 53	Annronria	ate Method		Linia	nds		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. D.A.

57.68

401B

57.7

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 401B

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
Sandy Loam	-	В	74%	42.5
Sandy Loam	-	А	22%	12.7
	-	BC	4%	2.5
Total Area				57.7

Impervious La	nduses Pre	sent:										
	Road	way	Sidew	/alk	Drive	way	Buildir	ng	SWN	/IF	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0.651	98	0	98	0	98	0.0	98	0	98	0.651	63.798
A	0	98	0	98	0	98	0.0	98	0	98	0	0
BC	1.497	98	0	98	0	98	0.0	98	0	98	1.497	146.706
Subtotal Area	2.148		0		0		0.0		0			
Pervious Land	uses Prese	ent:										
	Wood	land	Mead	ow	Wetl	and	Lawr	1	Cultiva	ated	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	22.69	60	0.00	65	0.00	50	19.17	69	0.00	74	41.86	2683.94
A	1.86	32	0.00	38	0.00	50	10.77	49	0.00	62	12.63	587.18
BC	1.05	67	0.00	71	0.00	50	0.00	74	0.00	78	1.05	70.28
Subtotal Area	25.60		0.00		0.00		29.94		0.00		1	
							Total Pervio	us Area	a		55.54	
				C	Composite A	rea	Total Impervious Area				2.148	
					Calculation	S	% Impervious				3.72%	
				1			Composite Curve Number				61.6	

Initial Abstraction and Tp Calculations

I	nitial Abstr	action					Composite I	Runoff C	oefficient			
Landuse	IA (mm)	Area	A * IA									
Landuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	25.601	256.01	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	0	0	0.05						0.05		0
Lawn	5	29.935	149.675	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	2.148	4.296	0.95						0.95		0
Composite IA	*4.67	57.684	7.10736	Compos	site Runoff	Coefficient	t					0
Initial abstraction is 4.67 mm based on Township guidelines.												

Total Area Check

Time to Peak Inputs							Uplands		Bransby	Williams	Air	port
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Concentrated	954.857	6	0.6%	1.64	0.13	2.04	1.3669961	1.37	NA	NA	NA	NA

Appropriate calculated time to peak: 1.37 Appropriate Method: Uplands

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2 qqq

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. 401C D.A. 24.6

24.59

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 401C

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
	-	В	73%	17.9
	-	A	0%	0.0
	-	BC	27%	6.7
Total Area				24.6

Impervious La	nduses Pre	sent:										
	Road	way	Sidew	/alk	Drive	way	Buildir	ng	SWN	1F	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0.482	98	0	98	0	98	0.0	98	0	98	0.482	47.236
A	0	98	0	98	0	98	0.0	98	0	98	0	0
BC	1.621	98	0	98	0	98	0.0	98	0	98	1.621	158.858
Subtotal Area	2.103		0		0		0.0		0			
Pervious Land	luses Prese	ent:										
	Wood	land	Mead	ow	Wetla	and	Lawr	I	Cultivated		Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	13.78	60	0.00	65	0.00	50	3.53	69	0.00	74	17.31	1070.37
A	0	32	0.00	38	0.00	50	0.00	49	0.00	62	0.00	0.00
BC	4.64	67	0.00	71	0.00	50	0.54	74	0.00	78	5.18	350.61
Subtotal Area	18.42		0.00		0.00		4.07		0.00			
							Total Pervio	us Area	a		22.49	
				C	composite A	rea	Total Imperv	/ious Ar	rea		2.103	
					Calculation	s	% Impervious				8.55%	
							Composite (Curve N	lumber		66.2	

Total Area Check

Initial Abstraction and Tp Calculations

l I	nitial Abstra	action					Composite F	Runoff C	oefficient			
Landuse	$I\Delta (mm)$	Area	Δ * ΙΔ									
Landuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	18.421	184.21	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	0	0	0.05						0.05		0
Lawn	5	4.066	20.33	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	2.103	4.206	0.95						0.95		0
Composite IA	4.67*	24.59	8.48906	Compos	ite Runoff	Coefficier	nt					0
Initial abstracti	on is 4.67 ı	nm base	d on Town	ship guid	elines.							
	Tim	ie to Pea	k Inputs				Uplands		Bransby	Williams	Aiı	port
Flow Path	Length	Drop	Slope	V/c ^{0.5}	Velocity	Tc (br)	Tp(br)	TOTAL	Tc (br)	Tn(hr)	Tc (br)	Tn(hr)
Description	(m)	(m)	(%)	V/3	(m/s)		1 p(11)	Tp (hr)	10(11)	1 P(11)	10 (11)	1 P(11)
Concentrated	600.276	21	3.5%	0.802	0.15	1.11	0.7447869	0.74	NA	NA	NA	NA

Appropriate calculated time to peak: 0.74 Appropriate Method: Uplands

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. 401D D.A. 44.9

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment 401D

Curve Number Calculation

44.895

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
	-	В	72%	32.2
	-	D	5%	2.2
	-	BC	23%	10.5
Total Area				44.9

Impervious La	nduses Pre	esent:										
	Road	way	Sidew	alk	Drive	way	Buildir	ng	SWM	1F	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0.241	98	0	98	0	98	0.0	98	0	98	0.241	23.618
D	0.763	98	0	98	0	98	0.0	98	0	98	0.763	74.774
BC	0.904	98	0	98	0	98	0.0	98	0	98	0.904	88.592
Subtotal Area	1.908		0		0		0.0		0			
Pervious Land	uses Prese	ent:										
	Wood	land	Mead	ow	Wetla	and	Lawr	I	Cultiva	ited	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	18.63	60	0.00	65	0.00	50	9.15	69	4.04	74	31.83	2048.45
D	1.536	79	0.00	81	0.00	50	0.00	84	0.00	86	1.54	121.34
BC	8.45	67	0.00	71	0.00	50	0.45	74	0.69	78	9.59	653.33
Subtotal Area	28.62		0.00		0.00		9.60		4.73			
							Total Pervio	us Area	1		42.95	
				C	composite A	rea	Total Imperv	ious Ar	ea		1.908	
					Calculation	s	% Imperviou	IS			4.25%	
							Composite (Curve N	umber		67.1	
							Total Area C	Check			44.86	

Initial Abstraction and Tp Calculations

	nitial Abstra	action					Composite F	Runoff C	oefficient			
Landuse	$I\Delta (mm)$	Area	Δ * ΙΔ									
Landuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	28.621	286.21	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	0	0	0.05						0.05		0
Lawn	5	9.598	47.99	0.18						0.18		0
Cultivated	7	4.73	33.13	0.22						0.22		0
Impervious	2	1.908	3.816	0.95						0.95		0
Composite IA	4.67*	44.86	8.27345	Compos	ite Runoff	Coefficier	nt					0
Initial abstracti	on is 4.67 i	mm base	d on Town	ship guid	elines.							
	Tim	ne to Pea	k Inputs				Uplands		Bransby	Williams	Air	port
Flow Path	Length	Drop	Slope	V/c ^{0.5}	Velocity	Tc (br)	Tp(br)	TOTAL	Tc (br)	Tp(br)	Tc (br)	Tn(hr)
Description	(m)	(m)	(%)	V/5	(m/s)	10 (11)	1 þ(iii)	Tp (hr)	10(11)	1P(11)	10 (11)	1P(III)
Concentrated	797.19	10	1.3%	0.8036	0.09	2.46	1.6485102	1.65	NA	NA	NA	NA

Appropriate calculated time to peak: 1.65 Appropriate Method: Uplands

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A.	Avonmore-A
D.A.	14.3

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment Avonmore-A

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
Sandy Loam	-	В	63%	9.0
Sandy Loam		D	37%	5.4
Total Area	,			14.344

Impervious La	nduses Pre	sent:										
	Roadv	vay	Sidew	alk	Drive	way	Buildir	ıg	SWN	1F	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0.403	98	0	98	0	98	0.0	98	0	98	0.403	39.494
- D	1.032	98	0	98	0	98	0.0	98	0	98	1.032	101.136
Subtotal Area	1.435		0		0		0.0		0			
Pervious Land	uses Prese	nt:										
	Woodl	and	Mead	WC	Wetla	and	Lawr	l	Cultiva	ated	Sub	totals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	8.55	60	0.00	65	0.00	50	0.00	69	0.00	74	8.55	512.94
- D	4.36	32	0.00	38	0.00	50	0.00	49	0.00	62	4.36	139.52
Subtotal Area	12.91		0.00		0.00		0.00		0.00			
							Total Pervio	us Area	a		12.909	
				C	composite Ai	rea	Total Imperv	/ious Ai	rea		1.435	
					Calculation	s	% Imperviou	IS			10.00%	
							Composite (Curve N	lumber		55.3	
							Total Area C	Check			14.344	

Initial Abstraction and Tp Calculations

	nitial Abstra	action					Composite	Runoff C	Coefficient			
Landuso	IA (mm)	Area	A * 1A							Sand	/ Loam	
Lanuuse		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	12.909	129.09	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	0	0	0.05						0.05		0
Lawn	5	0	0	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	1.435	2.87	0.95						0.95		0
Composite IA	4.67*	14.344	9.19967	Compos	ite Runoff	Coefficier	nt					0
Initial abstracti	on is 4.67 ı	mm base	d on Town	ship guid	elines.							
	Tim	ie to Peal	k Inputs				Uplands		Bransby \	Williams	Air	port
Flow Path	Length	Drop	Slope	V/C ^{0.5}	Velocity	To (br)	Tn(hr)	TOTAL	To (br)	Tn(hr)	To (br)	Tn(hr)
Description	(m)	(m)	(%)	V/5	(m/s)	10 (11)	1 p(iii)	Tp (hr)	10 (III)	1 p(iii)	10(11)	1 p(11)
Concentrated	450.4	7	0.1%	2.6375	0.08	1.56	1.0478056	1.05	NA	NA	NA	NA
-												
	Annronriat	e calcula	ted time to	neak:	1 05	Appropria	ate Method:		Unla	nds		

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

D.A. Avonmore-B D.A. 171.6

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment Avonmore-B

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic Group	% Area	Area
	-	В	62%	105.9
	-	D	22%	37.5
	-	CD	16%	28.2
Total Area				171.6

Impervious La	nduses Pre	esent:										
	Road	way	Sidew	/alk	Drive	way	Buildir	ng	SWN	1F	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	0	98	0	98	0	98	0.0	98	0	98	0	0
D	0.383	98	0	98	0	98	0.0	98	0	98	0.383	37.534
CD	0	98	0	98	0	98	0.0	98	0	98	0	0
Subtotal Area	0.383		0		0		0.0		0			
Pervious Land	luses Prese	ent:										
	Wood	land	Mead	ow	Wetl	and	Lawr	I	Cultiva	ated	Sub	ototals
Soils	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area (ha)	CN	Area	A*CN
B	65.78	60	0.00	65	0.00	50	40.29	69	0.00	74	106.08	6727.20
D	35.755	79	0.00	81	0.00	50	1.17	84	0.00	86	36.92	2922.76
CD	12.81	67	0.00	71	0.00	50	15.43	74	0.00	78	28.23	1999.60
Subtotal Area	114.34		0.00		0.00		56.89		0.00		1	
							Total Pervio	us Area	1		171.23	
				C	composite A	rea	Total Imperv	/ious Ar	ea		0.383	
					Calculation	S	% Imperviou	IS			0.22%	
							Composite (Curve N	lumber		68.1	
							Total Area C	Check			171.6	

Initial Abstraction and Tp Calculations

I	nitial Abstra	action					Composite F	Runoff C	oefficient			
Landuse	IA (mm)	Area	A * IA									
Edilduse	<i>u</i> (((((((((((((((((((((((((((((((((((((ha)	/ //	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	114.34	1143.44	0.08						0.08		0
Meadow	8	0	0	0.10						0.10		0
Wetland	16	0	0	0.05						0.05		0
Lawn	5	56.888	284.44	0.18						0.18		0
Cultivated	7	0.00	0.00	0.22						0.22		0
Impervious	2	0.383	0.766	0.95						0.95		0
Composite IA	4.67*	171.62	8.32472	Compos	ite Runoff	Coefficier	nt					0
Initial abstracti	on is 4.67 I	mm base	d on Town	ship guid	elines.							
	Tin	ne to Peal	k Inputs				Uplands		Bransby	Williams	Ai	rport
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Concentrated	1996.86	21	1.1%	0.8679	0.09	6.23	4.1756955	4.18	NA	NA	NA	NA

Appropriate calculated time to peak: 4.18 Appropriate Method: Uplands

Notes:

1. Hydrologic soil group classification from Design Chart 1.08, MTO Drainage Management Manual (1997)

2. Runoff Curve Numbers obtained from Table 10.1, NVCA Stormwater Technical Guide (2013)

3. Runoff coefficients obtained from Design Chart 1.07, MTO Drainage Management Manual (1997)

4. As per the NVCA Stormwater Technical Guide (2013), the Bransby Williams Method should be used for Tc calculations where the runoff coefficient is greater than 0.4. The values obtained using the Bransby Williams method seem low relative to the catchment areas, and the values calculated using the Airport Method yield more conservative Tc values, and as such the Airport Method Tc values are used.

ATTACHMENT II

Railway Culvert Capacity Results – CulvertMaster

Solve For: D	ischarge	-			
Culvert			Inverts		
	Discharge: 6.7505	m³/s	Invert Upstream	1: 74.71	m
Maximum Allo	wable HW: 76.86	m	Invert Downstream	r: 74.70	m
Tailwate	r Elevation: 74.70	m	Length	26.00	m
Section			Slope	0.000363	m/r
Shape:	Circular	•	- Headwater Beval	tions	
Material:	CMP	•	Maximum Allowa	ble: 76.86	m
Size:	2100 mm	•	Computed Headwa	ater: 76.86	m
Number:	1		Inlet Con	itrol: 76.71	m
Mannings:	0.024	•	Outlet Con	itrol: 76.86	m
nlet			Exit Results		
Entrance:	Projecting	•	Discharge: 6.7	505	m³/
Ke:	0.90		Velocity: 3.1	6	m/s
			Depth: 1.2	3	m

Figure 1: Railway Culvert #1 Capacity

Culvert Calculator - Culvert2 Capacity

	Discharge: 0.7539	m³/s	Invert Upstream:	74.21	m
Maximum Allo	wable HW: 75.11	m	Invert Downstream:	72.98	m
Tailwate	r Elevation: 0.00	m	Length:	39.00	m
Section			Slope:	0.031535	m/1
Shape:	Circular	-	Headwater Elevatio	ns	
Material:	СМР	•	Maximum Allowab	e: 75.11	m
Size:	900 mm	•	Computed Headwate	er: 75.11	m
Number:	1		Inlet Contr	ol: 75.01	m
Mannings:	0.024	•	Outlet Contr	ol: 75.11	m
nlet			Exit Results		
Entrance:	Projecting	•	Discharge: 0.753	19	m ³ /
Ke:	0.90		Velocity: 2.64		m/s
			Depth: 0.41		m

Figure 2: Railway Culvert #2 Capacity

Culvert Calculator - Culvert 3 Capacity

Culvert			Inverts		
	Discharge: 11.5667	m ³ /s	Invert Upstream	69.24	m
Maximum Allo	wable HW: 71.24	m	Invert Downstream	69.20	m
Tailwate	r Elevation: 0.00	m	Length	39.00	m
Section			Slope	0.001055	m/n
Shape:	Horizontal Ellipse	-	Headwater Bevati	ons	
Material:	Concrete	•	Maximum Allowal	ole: 71.24	m
Size:	1960 x 3060 mm	•	Computed Headwa	ter: 71.24	m
Number:	1		Inlet Cont	rol: 71.19	m
Mannings:	0.013	•	Outlet Cont	rol: 71.24	m
Inlet			Exit Results		
Entrance:	Groove end projecting (ho	orizontal ellip 💌	Discharge: 11.5	667	m ³ /s
Ke:	0.20		Velocity: 3.39		m/s
			Depth: 1.28		m

Figure 3: Railway Culvert #3 Capacity, Existing Pipe Size

Culvert Calculator - Culvert2 Capacity		
Solve For: Discharge		
Culvert	Inverts	
Discharge: 1.1083 m³/s	Invert Upstream: 74.21	m
Maximum Allowable HW: 75.26 m	Invert Downstream: 72.98	m
Tailwater Elevation: 0.00 m	Length: 39.00	m
Section	Slope: 0.031535	m/m
Shape: Circular	Headwater Elevations	
Material: CMP	Maximum Allowable: 75.26	m
Size: 1050 mm 💌	Computed Headwater: 75.26	m
Number: 1	Inlet Control: 75.14	m
Mannings: 0.024	Outlet Control: 75.26	m
_ Inlet	Exit Results	
Entrance: Projecting	Discharge: 1.1083	m³/s
Ке: 0.90	Velocity: 2.90	m/s
,	Depth: 0.47	m

Figure 4: Railway Culvert #3 Capacity, Proposed Pipe Size

FIGURES

No.	ISSUE	DATE: MMM/DD/YYYY	Project	LONG SAULT BUSIN
0	ISSUED FOR SPA 1ST SUBMISSION	NOV/15/2021]	TOWNSHIP OF SOUTH
			Drawing	
				SITE LOCAT

DRAWINGS

SCALE: 1: 2000	—							
1. THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSOCIATES INC. AND THE REPRODUCTION OF ANY PART		Town	Io. ISSUE	DATE: MMM/DD/YYYY	Engineer	Engineer	Project	
WITHOUT PRIOR WRITTEN CONSENT OF THIS OFFICE IS STRICTLY PROHIBITED.		C	0 ISSUED FOR SPA 1ST SUBMISSION	N0V/15/2021				LUNG SAULT INDU
 THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATUMS ON SITE AND REPORT ANY DISCREPANCIES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION. 					FOR R	EVIEW		TOWN OF LON
 THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APPLICABLE TO THIS PROJECT. 					NOT TO BE USED	FOR CONSTRUCTION	Drawing	EROSION
4. DO NOT SCALE THE DRAWINGS.								SEDIMENT C
5. ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.								SEDIMENT C

PROPERTY LINE PROPER	Intel EXISTING GRADE Intel EXISTING GRADE	APPENDENT OF ASPHALT PROCEEDING PROPERTY PR
	PR. 117.0m- CSP. STM 9	-2150mm# 0.30%
	EX. RAILW (215me C	WAY OUTLET #I
USTRIAL PARK NG SAULT CONSULTING ENGINEERS CONSULTING CONSULTING ENGINEERS CONSULT	PROPERTY LINE EXISTING CONTOUR (0.5m) EXISTING CONTOUR (1.0m) EXISTING DITCH EXISTING FENCE PHASE 'A' LIMITS EXISTING GRADE PROPOSED GRADE PROPOSED GRADE (TO MATCH EXISTING)	LEGEND 2.03 PROPOSED MINOR FLOW DIRECTION 2.03 PROPOSED GRASSED SWALE IIIIIII PROPOSED SLOPE (3:1 MAX.) IIIIIIIII PROPOSED SLOPE (3:1 MAX.) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
I.E./D.W.] I.E./D.W.] I.TUUU I I.H.	USTRIAL PARK ING SAULT G AND G PLAN	Drown By D.G. /M.M. Design By D.G. /M.M. Project 1909-5629 Onex By T.E. /B.W. Dirack By T.E. /B.W. Dirack By T.E. /B.W. CRD-1

WATERCOURSE Z

2800 High Point Drive Suite 100 Militon, ON L9T 6P4 905-875-0026 T 905-875-4915 F WWW.CFCR02IER.CA

1909-5629 D.G./M.M. D.G./M.M. T.E. /B.W. T.E./B.W. N/A DET-1